![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clsneiel1 | Structured version Visualization version GIF version |
Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then membership in the closure of a subset is equivalent to the complement of the subset not being a neighborhood of the point. (Contributed by RP, 7-Jun-2021.) |
Ref | Expression |
---|---|
clsnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
clsnei.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
clsnei.d | ⊢ 𝐷 = (𝑃‘𝐵) |
clsnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
clsnei.h | ⊢ 𝐻 = (𝐹 ∘ 𝐷) |
clsnei.r | ⊢ (𝜑 → 𝐾𝐻𝑁) |
clsneiel.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
clsneiel.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
Ref | Expression |
---|---|
clsneiel1 | ⊢ (𝜑 → (𝑋 ∈ (𝐾‘𝑆) ↔ ¬ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clsnei.d | . . . 4 ⊢ 𝐷 = (𝑃‘𝐵) | |
2 | clsnei.h | . . . 4 ⊢ 𝐻 = (𝐹 ∘ 𝐷) | |
3 | clsnei.r | . . . 4 ⊢ (𝜑 → 𝐾𝐻𝑁) | |
4 | 1, 2, 3 | clsneibex 43597 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
5 | 4 | ancli 547 | . 2 ⊢ (𝜑 → (𝜑 ∧ 𝐵 ∈ V)) |
6 | clsnei.o | . . . . 5 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
7 | simpr 483 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐵 ∈ V) | |
8 | 7 | pwexd 5373 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝒫 𝐵 ∈ V) |
9 | clsnei.f | . . . . 5 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
10 | 6, 8, 7, 9 | fsovfd 43507 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)⟶(𝒫 𝒫 𝐵 ↑m 𝐵)) |
11 | 10 | ffnd 6718 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) |
12 | clsnei.p | . . . . 5 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
13 | 12, 1, 7 | dssmapf1od 43516 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
14 | f1of 6834 | . . . 4 ⊢ (𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)⟶(𝒫 𝐵 ↑m 𝒫 𝐵)) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)⟶(𝒫 𝐵 ↑m 𝒫 𝐵)) |
16 | 2 | breqi 5149 | . . . . 5 ⊢ (𝐾𝐻𝑁 ↔ 𝐾(𝐹 ∘ 𝐷)𝑁) |
17 | 3, 16 | sylib 217 | . . . 4 ⊢ (𝜑 → 𝐾(𝐹 ∘ 𝐷)𝑁) |
18 | 17 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐾(𝐹 ∘ 𝐷)𝑁) |
19 | 11, 15, 18 | brcoffn 43525 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) |
20 | simprl 769 | . . . 4 ⊢ (((𝜑 ∧ 𝐵 ∈ V) ∧ (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) → 𝐾𝐷(𝐷‘𝐾)) | |
21 | clsneiel.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
22 | 21 | ad2antrr 724 | . . . 4 ⊢ (((𝜑 ∧ 𝐵 ∈ V) ∧ (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) → 𝑋 ∈ 𝐵) |
23 | clsneiel.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
24 | 23 | ad2antrr 724 | . . . 4 ⊢ (((𝜑 ∧ 𝐵 ∈ V) ∧ (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) → 𝑆 ∈ 𝒫 𝐵) |
25 | 12, 1, 20, 22, 24 | ntrclselnel1 43552 | . . 3 ⊢ (((𝜑 ∧ 𝐵 ∈ V) ∧ (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) → (𝑋 ∈ (𝐾‘𝑆) ↔ ¬ 𝑋 ∈ ((𝐷‘𝐾)‘(𝐵 ∖ 𝑆)))) |
26 | simprr 771 | . . . . 5 ⊢ (((𝜑 ∧ 𝐵 ∈ V) ∧ (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) → (𝐷‘𝐾)𝐹𝑁) | |
27 | simplr 767 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐵 ∈ V) ∧ (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) → 𝐵 ∈ V) | |
28 | difssd 4125 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐵 ∈ V) ∧ (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) → (𝐵 ∖ 𝑆) ⊆ 𝐵) | |
29 | 27, 28 | sselpwd 5323 | . . . . 5 ⊢ (((𝜑 ∧ 𝐵 ∈ V) ∧ (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
30 | 6, 9, 26, 22, 29 | ntrneiel 43576 | . . . 4 ⊢ (((𝜑 ∧ 𝐵 ∈ V) ∧ (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) → (𝑋 ∈ ((𝐷‘𝐾)‘(𝐵 ∖ 𝑆)) ↔ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑋))) |
31 | 30 | notbid 317 | . . 3 ⊢ (((𝜑 ∧ 𝐵 ∈ V) ∧ (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) → (¬ 𝑋 ∈ ((𝐷‘𝐾)‘(𝐵 ∖ 𝑆)) ↔ ¬ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑋))) |
32 | 25, 31 | bitrd 278 | . 2 ⊢ (((𝜑 ∧ 𝐵 ∈ V) ∧ (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) → (𝑋 ∈ (𝐾‘𝑆) ↔ ¬ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑋))) |
33 | 5, 19, 32 | syl2anc2 583 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐾‘𝑆) ↔ ¬ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3419 Vcvv 3463 ∖ cdif 3936 𝒫 cpw 4598 class class class wbr 5143 ↦ cmpt 5226 ∘ ccom 5676 ⟶wf 6539 –1-1-onto→wf1o 6542 ‘cfv 6543 (class class class)co 7416 ∈ cmpo 7418 ↑m cmap 8843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7419 df-oprab 7420 df-mpo 7421 df-1st 7991 df-2nd 7992 df-map 8845 |
This theorem is referenced by: clsneiel2 43604 clsneifv4 43606 |
Copyright terms: Public domain | W3C validator |