| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clsneiel1 | Structured version Visualization version GIF version | ||
| Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then membership in the closure of a subset is equivalent to the complement of the subset not being a neighborhood of the point. (Contributed by RP, 7-Jun-2021.) |
| Ref | Expression |
|---|---|
| clsnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| clsnei.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
| clsnei.d | ⊢ 𝐷 = (𝑃‘𝐵) |
| clsnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
| clsnei.h | ⊢ 𝐻 = (𝐹 ∘ 𝐷) |
| clsnei.r | ⊢ (𝜑 → 𝐾𝐻𝑁) |
| clsneiel.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| clsneiel.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
| Ref | Expression |
|---|---|
| clsneiel1 | ⊢ (𝜑 → (𝑋 ∈ (𝐾‘𝑆) ↔ ¬ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clsnei.d | . . . 4 ⊢ 𝐷 = (𝑃‘𝐵) | |
| 2 | clsnei.h | . . . 4 ⊢ 𝐻 = (𝐹 ∘ 𝐷) | |
| 3 | clsnei.r | . . . 4 ⊢ (𝜑 → 𝐾𝐻𝑁) | |
| 4 | 1, 2, 3 | clsneibex 44098 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
| 5 | 4 | ancli 548 | . 2 ⊢ (𝜑 → (𝜑 ∧ 𝐵 ∈ V)) |
| 6 | clsnei.o | . . . . 5 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
| 7 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐵 ∈ V) | |
| 8 | 7 | pwexd 5337 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝒫 𝐵 ∈ V) |
| 9 | clsnei.f | . . . . 5 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
| 10 | 6, 8, 7, 9 | fsovfd 44008 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)⟶(𝒫 𝒫 𝐵 ↑m 𝐵)) |
| 11 | 10 | ffnd 6692 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 12 | clsnei.p | . . . . 5 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
| 13 | 12, 1, 7 | dssmapf1od 44017 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 14 | f1of 6803 | . . . 4 ⊢ (𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)⟶(𝒫 𝐵 ↑m 𝒫 𝐵)) | |
| 15 | 13, 14 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)⟶(𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 16 | 2 | breqi 5116 | . . . . 5 ⊢ (𝐾𝐻𝑁 ↔ 𝐾(𝐹 ∘ 𝐷)𝑁) |
| 17 | 3, 16 | sylib 218 | . . . 4 ⊢ (𝜑 → 𝐾(𝐹 ∘ 𝐷)𝑁) |
| 18 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐾(𝐹 ∘ 𝐷)𝑁) |
| 19 | 11, 15, 18 | brcoffn 44026 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) |
| 20 | simprl 770 | . . . 4 ⊢ (((𝜑 ∧ 𝐵 ∈ V) ∧ (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) → 𝐾𝐷(𝐷‘𝐾)) | |
| 21 | clsneiel.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 22 | 21 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝐵 ∈ V) ∧ (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) → 𝑋 ∈ 𝐵) |
| 23 | clsneiel.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
| 24 | 23 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝐵 ∈ V) ∧ (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) → 𝑆 ∈ 𝒫 𝐵) |
| 25 | 12, 1, 20, 22, 24 | ntrclselnel1 44053 | . . 3 ⊢ (((𝜑 ∧ 𝐵 ∈ V) ∧ (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) → (𝑋 ∈ (𝐾‘𝑆) ↔ ¬ 𝑋 ∈ ((𝐷‘𝐾)‘(𝐵 ∖ 𝑆)))) |
| 26 | simprr 772 | . . . . 5 ⊢ (((𝜑 ∧ 𝐵 ∈ V) ∧ (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) → (𝐷‘𝐾)𝐹𝑁) | |
| 27 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐵 ∈ V) ∧ (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) → 𝐵 ∈ V) | |
| 28 | difssd 4103 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐵 ∈ V) ∧ (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) → (𝐵 ∖ 𝑆) ⊆ 𝐵) | |
| 29 | 27, 28 | sselpwd 5286 | . . . . 5 ⊢ (((𝜑 ∧ 𝐵 ∈ V) ∧ (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
| 30 | 6, 9, 26, 22, 29 | ntrneiel 44077 | . . . 4 ⊢ (((𝜑 ∧ 𝐵 ∈ V) ∧ (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) → (𝑋 ∈ ((𝐷‘𝐾)‘(𝐵 ∖ 𝑆)) ↔ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑋))) |
| 31 | 30 | notbid 318 | . . 3 ⊢ (((𝜑 ∧ 𝐵 ∈ V) ∧ (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) → (¬ 𝑋 ∈ ((𝐷‘𝐾)‘(𝐵 ∖ 𝑆)) ↔ ¬ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑋))) |
| 32 | 25, 31 | bitrd 279 | . 2 ⊢ (((𝜑 ∧ 𝐵 ∈ V) ∧ (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) → (𝑋 ∈ (𝐾‘𝑆) ↔ ¬ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑋))) |
| 33 | 5, 19, 32 | syl2anc2 585 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐾‘𝑆) ↔ ¬ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 ∖ cdif 3914 𝒫 cpw 4566 class class class wbr 5110 ↦ cmpt 5191 ∘ ccom 5645 ⟶wf 6510 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ↑m cmap 8802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 |
| This theorem is referenced by: clsneiel2 44105 clsneifv4 44107 |
| Copyright terms: Public domain | W3C validator |