Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsneiel1 Structured version   Visualization version   GIF version

Theorem clsneiel1 44147
Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then membership in the closure of a subset is equivalent to the complement of the subset not being a neighborhood of the point. (Contributed by RP, 7-Jun-2021.)
Hypotheses
Ref Expression
clsnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
clsnei.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
clsnei.d 𝐷 = (𝑃𝐵)
clsnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
clsnei.h 𝐻 = (𝐹𝐷)
clsnei.r (𝜑𝐾𝐻𝑁)
clsneiel.x (𝜑𝑋𝐵)
clsneiel.s (𝜑𝑆 ∈ 𝒫 𝐵)
Assertion
Ref Expression
clsneiel1 (𝜑 → (𝑋 ∈ (𝐾𝑆) ↔ ¬ (𝐵𝑆) ∈ (𝑁𝑋)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝐵,𝑛,𝑜,𝑝   𝐷,𝑖,𝑗,𝑘,𝑙,𝑚   𝐷,𝑛,𝑜,𝑝   𝑖,𝐹,𝑗,𝑘,𝑙   𝑛,𝐹,𝑜,𝑝   𝑖,𝐾,𝑗,𝑘,𝑙,𝑚   𝑛,𝐾,𝑜,𝑝   𝑖,𝑁,𝑗,𝑘,𝑙   𝑛,𝑁,𝑜,𝑝   𝑆,𝑚   𝑆,𝑜   𝑋,𝑙,𝑚   𝜑,𝑖,𝑗,𝑘,𝑙   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝑃(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑆(𝑖,𝑗,𝑘,𝑛,𝑝,𝑙)   𝐹(𝑚)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑁(𝑚)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑋(𝑖,𝑗,𝑘,𝑛,𝑜,𝑝)

Proof of Theorem clsneiel1
StepHypRef Expression
1 clsnei.d . . . 4 𝐷 = (𝑃𝐵)
2 clsnei.h . . . 4 𝐻 = (𝐹𝐷)
3 clsnei.r . . . 4 (𝜑𝐾𝐻𝑁)
41, 2, 3clsneibex 44141 . . 3 (𝜑𝐵 ∈ V)
54ancli 548 . 2 (𝜑 → (𝜑𝐵 ∈ V))
6 clsnei.o . . . . 5 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
7 simpr 484 . . . . . 6 ((𝜑𝐵 ∈ V) → 𝐵 ∈ V)
87pwexd 5317 . . . . 5 ((𝜑𝐵 ∈ V) → 𝒫 𝐵 ∈ V)
9 clsnei.f . . . . 5 𝐹 = (𝒫 𝐵𝑂𝐵)
106, 8, 7, 9fsovfd 44051 . . . 4 ((𝜑𝐵 ∈ V) → 𝐹:(𝒫 𝐵m 𝒫 𝐵)⟶(𝒫 𝒫 𝐵m 𝐵))
1110ffnd 6652 . . 3 ((𝜑𝐵 ∈ V) → 𝐹 Fn (𝒫 𝐵m 𝒫 𝐵))
12 clsnei.p . . . . 5 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
1312, 1, 7dssmapf1od 44060 . . . 4 ((𝜑𝐵 ∈ V) → 𝐷:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
14 f1of 6763 . . . 4 (𝐷:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵) → 𝐷:(𝒫 𝐵m 𝒫 𝐵)⟶(𝒫 𝐵m 𝒫 𝐵))
1513, 14syl 17 . . 3 ((𝜑𝐵 ∈ V) → 𝐷:(𝒫 𝐵m 𝒫 𝐵)⟶(𝒫 𝐵m 𝒫 𝐵))
162breqi 5097 . . . . 5 (𝐾𝐻𝑁𝐾(𝐹𝐷)𝑁)
173, 16sylib 218 . . . 4 (𝜑𝐾(𝐹𝐷)𝑁)
1817adantr 480 . . 3 ((𝜑𝐵 ∈ V) → 𝐾(𝐹𝐷)𝑁)
1911, 15, 18brcoffn 44069 . 2 ((𝜑𝐵 ∈ V) → (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁))
20 simprl 770 . . . 4 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → 𝐾𝐷(𝐷𝐾))
21 clsneiel.x . . . . 5 (𝜑𝑋𝐵)
2221ad2antrr 726 . . . 4 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → 𝑋𝐵)
23 clsneiel.s . . . . 5 (𝜑𝑆 ∈ 𝒫 𝐵)
2423ad2antrr 726 . . . 4 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → 𝑆 ∈ 𝒫 𝐵)
2512, 1, 20, 22, 24ntrclselnel1 44096 . . 3 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → (𝑋 ∈ (𝐾𝑆) ↔ ¬ 𝑋 ∈ ((𝐷𝐾)‘(𝐵𝑆))))
26 simprr 772 . . . . 5 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → (𝐷𝐾)𝐹𝑁)
27 simplr 768 . . . . . 6 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → 𝐵 ∈ V)
28 difssd 4087 . . . . . 6 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → (𝐵𝑆) ⊆ 𝐵)
2927, 28sselpwd 5266 . . . . 5 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → (𝐵𝑆) ∈ 𝒫 𝐵)
306, 9, 26, 22, 29ntrneiel 44120 . . . 4 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → (𝑋 ∈ ((𝐷𝐾)‘(𝐵𝑆)) ↔ (𝐵𝑆) ∈ (𝑁𝑋)))
3130notbid 318 . . 3 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → (¬ 𝑋 ∈ ((𝐷𝐾)‘(𝐵𝑆)) ↔ ¬ (𝐵𝑆) ∈ (𝑁𝑋)))
3225, 31bitrd 279 . 2 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → (𝑋 ∈ (𝐾𝑆) ↔ ¬ (𝐵𝑆) ∈ (𝑁𝑋)))
335, 19, 32syl2anc2 585 1 (𝜑 → (𝑋 ∈ (𝐾𝑆) ↔ ¬ (𝐵𝑆) ∈ (𝑁𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  cdif 3899  𝒫 cpw 4550   class class class wbr 5091  cmpt 5172  ccom 5620  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cmpo 7348  m cmap 8750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752
This theorem is referenced by:  clsneiel2  44148  clsneifv4  44150
  Copyright terms: Public domain W3C validator