Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsneiel1 Structured version   Visualization version   GIF version

Theorem clsneiel1 44097
Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then membership in the closure of a subset is equivalent to the complement of the subset not being a neighborhood of the point. (Contributed by RP, 7-Jun-2021.)
Hypotheses
Ref Expression
clsnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
clsnei.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
clsnei.d 𝐷 = (𝑃𝐵)
clsnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
clsnei.h 𝐻 = (𝐹𝐷)
clsnei.r (𝜑𝐾𝐻𝑁)
clsneiel.x (𝜑𝑋𝐵)
clsneiel.s (𝜑𝑆 ∈ 𝒫 𝐵)
Assertion
Ref Expression
clsneiel1 (𝜑 → (𝑋 ∈ (𝐾𝑆) ↔ ¬ (𝐵𝑆) ∈ (𝑁𝑋)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝐵,𝑛,𝑜,𝑝   𝐷,𝑖,𝑗,𝑘,𝑙,𝑚   𝐷,𝑛,𝑜,𝑝   𝑖,𝐹,𝑗,𝑘,𝑙   𝑛,𝐹,𝑜,𝑝   𝑖,𝐾,𝑗,𝑘,𝑙,𝑚   𝑛,𝐾,𝑜,𝑝   𝑖,𝑁,𝑗,𝑘,𝑙   𝑛,𝑁,𝑜,𝑝   𝑆,𝑚   𝑆,𝑜   𝑋,𝑙,𝑚   𝜑,𝑖,𝑗,𝑘,𝑙   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝑃(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑆(𝑖,𝑗,𝑘,𝑛,𝑝,𝑙)   𝐹(𝑚)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑁(𝑚)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑋(𝑖,𝑗,𝑘,𝑛,𝑜,𝑝)

Proof of Theorem clsneiel1
StepHypRef Expression
1 clsnei.d . . . 4 𝐷 = (𝑃𝐵)
2 clsnei.h . . . 4 𝐻 = (𝐹𝐷)
3 clsnei.r . . . 4 (𝜑𝐾𝐻𝑁)
41, 2, 3clsneibex 44091 . . 3 (𝜑𝐵 ∈ V)
54ancli 548 . 2 (𝜑 → (𝜑𝐵 ∈ V))
6 clsnei.o . . . . 5 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
7 simpr 484 . . . . . 6 ((𝜑𝐵 ∈ V) → 𝐵 ∈ V)
87pwexd 5334 . . . . 5 ((𝜑𝐵 ∈ V) → 𝒫 𝐵 ∈ V)
9 clsnei.f . . . . 5 𝐹 = (𝒫 𝐵𝑂𝐵)
106, 8, 7, 9fsovfd 44001 . . . 4 ((𝜑𝐵 ∈ V) → 𝐹:(𝒫 𝐵m 𝒫 𝐵)⟶(𝒫 𝒫 𝐵m 𝐵))
1110ffnd 6689 . . 3 ((𝜑𝐵 ∈ V) → 𝐹 Fn (𝒫 𝐵m 𝒫 𝐵))
12 clsnei.p . . . . 5 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
1312, 1, 7dssmapf1od 44010 . . . 4 ((𝜑𝐵 ∈ V) → 𝐷:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
14 f1of 6800 . . . 4 (𝐷:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵) → 𝐷:(𝒫 𝐵m 𝒫 𝐵)⟶(𝒫 𝐵m 𝒫 𝐵))
1513, 14syl 17 . . 3 ((𝜑𝐵 ∈ V) → 𝐷:(𝒫 𝐵m 𝒫 𝐵)⟶(𝒫 𝐵m 𝒫 𝐵))
162breqi 5113 . . . . 5 (𝐾𝐻𝑁𝐾(𝐹𝐷)𝑁)
173, 16sylib 218 . . . 4 (𝜑𝐾(𝐹𝐷)𝑁)
1817adantr 480 . . 3 ((𝜑𝐵 ∈ V) → 𝐾(𝐹𝐷)𝑁)
1911, 15, 18brcoffn 44019 . 2 ((𝜑𝐵 ∈ V) → (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁))
20 simprl 770 . . . 4 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → 𝐾𝐷(𝐷𝐾))
21 clsneiel.x . . . . 5 (𝜑𝑋𝐵)
2221ad2antrr 726 . . . 4 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → 𝑋𝐵)
23 clsneiel.s . . . . 5 (𝜑𝑆 ∈ 𝒫 𝐵)
2423ad2antrr 726 . . . 4 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → 𝑆 ∈ 𝒫 𝐵)
2512, 1, 20, 22, 24ntrclselnel1 44046 . . 3 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → (𝑋 ∈ (𝐾𝑆) ↔ ¬ 𝑋 ∈ ((𝐷𝐾)‘(𝐵𝑆))))
26 simprr 772 . . . . 5 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → (𝐷𝐾)𝐹𝑁)
27 simplr 768 . . . . . 6 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → 𝐵 ∈ V)
28 difssd 4100 . . . . . 6 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → (𝐵𝑆) ⊆ 𝐵)
2927, 28sselpwd 5283 . . . . 5 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → (𝐵𝑆) ∈ 𝒫 𝐵)
306, 9, 26, 22, 29ntrneiel 44070 . . . 4 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → (𝑋 ∈ ((𝐷𝐾)‘(𝐵𝑆)) ↔ (𝐵𝑆) ∈ (𝑁𝑋)))
3130notbid 318 . . 3 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → (¬ 𝑋 ∈ ((𝐷𝐾)‘(𝐵𝑆)) ↔ ¬ (𝐵𝑆) ∈ (𝑁𝑋)))
3225, 31bitrd 279 . 2 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → (𝑋 ∈ (𝐾𝑆) ↔ ¬ (𝐵𝑆) ∈ (𝑁𝑋)))
335, 19, 32syl2anc2 585 1 (𝜑 → (𝑋 ∈ (𝐾𝑆) ↔ ¬ (𝐵𝑆) ∈ (𝑁𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  cdif 3911  𝒫 cpw 4563   class class class wbr 5107  cmpt 5188  ccom 5642  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cmpo 7389  m cmap 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801
This theorem is referenced by:  clsneiel2  44098  clsneifv4  44100
  Copyright terms: Public domain W3C validator