Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > clsneinex | Structured version Visualization version GIF version |
Description: If closure and neighborhoods functions are related, the neighborhoods function exists. (Contributed by RP, 27-Jun-2021.) |
Ref | Expression |
---|---|
clsnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
clsnei.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
clsnei.d | ⊢ 𝐷 = (𝑃‘𝐵) |
clsnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
clsnei.h | ⊢ 𝐻 = (𝐹 ∘ 𝐷) |
clsnei.r | ⊢ (𝜑 → 𝐾𝐻𝑁) |
Ref | Expression |
---|---|
clsneinex | ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clsnei.o | . 2 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | clsnei.f | . 2 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
3 | clsnei.d | . . . . 5 ⊢ 𝐷 = (𝑃‘𝐵) | |
4 | clsnei.h | . . . . 5 ⊢ 𝐻 = (𝐹 ∘ 𝐷) | |
5 | clsnei.r | . . . . 5 ⊢ (𝜑 → 𝐾𝐻𝑁) | |
6 | 3, 4, 5 | clsneibex 41712 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) |
7 | pwexg 5301 | . . . . . . . 8 ⊢ (𝐵 ∈ V → 𝒫 𝐵 ∈ V) | |
8 | 7 | adantl 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝒫 𝐵 ∈ V) |
9 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐵 ∈ V) | |
10 | 1, 8, 9, 2 | fsovf1od 41624 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
11 | f1ofn 6717 | . . . . . 6 ⊢ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) → 𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) |
13 | clsnei.p | . . . . . . 7 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
14 | 13, 3, 9 | dssmapf1od 41629 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
15 | f1of 6716 | . . . . . 6 ⊢ (𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)⟶(𝒫 𝐵 ↑m 𝒫 𝐵)) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)⟶(𝒫 𝐵 ↑m 𝒫 𝐵)) |
17 | 5 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐾𝐻𝑁) |
18 | 4 | breqi 5080 | . . . . . 6 ⊢ (𝐾𝐻𝑁 ↔ 𝐾(𝐹 ∘ 𝐷)𝑁) |
19 | 17, 18 | sylib 217 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐾(𝐹 ∘ 𝐷)𝑁) |
20 | 12, 16, 19 | brcoffn 41640 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) |
21 | 6, 20 | mpdan 684 | . . 3 ⊢ (𝜑 → (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) |
22 | 21 | simprd 496 | . 2 ⊢ (𝜑 → (𝐷‘𝐾)𝐹𝑁) |
23 | 1, 2, 22 | ntrneinex 41687 | 1 ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 ∖ cdif 3884 𝒫 cpw 4533 class class class wbr 5074 ↦ cmpt 5157 ∘ ccom 5593 Fn wfn 6428 ⟶wf 6429 –1-1-onto→wf1o 6432 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 ↑m cmap 8615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-map 8617 |
This theorem is referenced by: clsneifv3 41720 |
Copyright terms: Public domain | W3C validator |