Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > clsneinex | Structured version Visualization version GIF version |
Description: If closure and neighborhoods functions are related, the neighborhoods function exists. (Contributed by RP, 27-Jun-2021.) |
Ref | Expression |
---|---|
clsnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
clsnei.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
clsnei.d | ⊢ 𝐷 = (𝑃‘𝐵) |
clsnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
clsnei.h | ⊢ 𝐻 = (𝐹 ∘ 𝐷) |
clsnei.r | ⊢ (𝜑 → 𝐾𝐻𝑁) |
Ref | Expression |
---|---|
clsneinex | ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clsnei.o | . 2 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | clsnei.f | . 2 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
3 | clsnei.d | . . . . 5 ⊢ 𝐷 = (𝑃‘𝐵) | |
4 | clsnei.h | . . . . 5 ⊢ 𝐻 = (𝐹 ∘ 𝐷) | |
5 | clsnei.r | . . . . 5 ⊢ (𝜑 → 𝐾𝐻𝑁) | |
6 | 3, 4, 5 | clsneibex 41206 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) |
7 | pwexg 5250 | . . . . . . . 8 ⊢ (𝐵 ∈ V → 𝒫 𝐵 ∈ V) | |
8 | 7 | adantl 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝒫 𝐵 ∈ V) |
9 | simpr 488 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐵 ∈ V) | |
10 | 1, 8, 9, 2 | fsovf1od 41118 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
11 | f1ofn 6607 | . . . . . 6 ⊢ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) → 𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) |
13 | clsnei.p | . . . . . . 7 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
14 | 13, 3, 9 | dssmapf1od 41123 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
15 | f1of 6606 | . . . . . 6 ⊢ (𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)⟶(𝒫 𝐵 ↑m 𝒫 𝐵)) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)⟶(𝒫 𝐵 ↑m 𝒫 𝐵)) |
17 | 5 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐾𝐻𝑁) |
18 | 4 | breqi 5041 | . . . . . 6 ⊢ (𝐾𝐻𝑁 ↔ 𝐾(𝐹 ∘ 𝐷)𝑁) |
19 | 17, 18 | sylib 221 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐾(𝐹 ∘ 𝐷)𝑁) |
20 | 12, 16, 19 | brcoffn 41134 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) |
21 | 6, 20 | mpdan 686 | . . 3 ⊢ (𝜑 → (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) |
22 | 21 | simprd 499 | . 2 ⊢ (𝜑 → (𝐷‘𝐾)𝐹𝑁) |
23 | 1, 2, 22 | ntrneinex 41181 | 1 ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {crab 3074 Vcvv 3409 ∖ cdif 3857 𝒫 cpw 4497 class class class wbr 5035 ↦ cmpt 5115 ∘ ccom 5531 Fn wfn 6334 ⟶wf 6335 –1-1-onto→wf1o 6338 ‘cfv 6339 (class class class)co 7155 ∈ cmpo 7157 ↑m cmap 8421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7158 df-oprab 7159 df-mpo 7160 df-1st 7698 df-2nd 7699 df-map 8423 |
This theorem is referenced by: clsneifv3 41214 |
Copyright terms: Public domain | W3C validator |