Step | Hyp | Ref
| Expression |
1 | | coeq2 5767 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝑈 ∘ 𝑥) = (𝑈 ∘ ∅)) |
2 | | co02 6164 |
. . . . . . 7
⊢ (𝑈 ∘ ∅) =
∅ |
3 | 1, 2 | eqtrdi 2794 |
. . . . . 6
⊢ (𝑥 = ∅ → (𝑈 ∘ 𝑥) = ∅) |
4 | 3 | oveq2d 7291 |
. . . . 5
⊢ (𝑥 = ∅ → (𝑀 Σg
(𝑈 ∘ 𝑥)) = (𝑀 Σg
∅)) |
5 | | id 22 |
. . . . 5
⊢ (𝑥 = ∅ → 𝑥 = ∅) |
6 | 4, 5 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = ∅ → ((𝑀 Σg
(𝑈 ∘ 𝑥)) = 𝑥 ↔ (𝑀 Σg ∅) =
∅)) |
7 | 6 | imbi2d 341 |
. . 3
⊢ (𝑥 = ∅ → ((𝐼 ∈ 𝑉 → (𝑀 Σg (𝑈 ∘ 𝑥)) = 𝑥) ↔ (𝐼 ∈ 𝑉 → (𝑀 Σg ∅) =
∅))) |
8 | | coeq2 5767 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑈 ∘ 𝑥) = (𝑈 ∘ 𝑦)) |
9 | 8 | oveq2d 7291 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑀 Σg (𝑈 ∘ 𝑥)) = (𝑀 Σg (𝑈 ∘ 𝑦))) |
10 | | id 22 |
. . . . 5
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) |
11 | 9, 10 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝑀 Σg (𝑈 ∘ 𝑥)) = 𝑥 ↔ (𝑀 Σg (𝑈 ∘ 𝑦)) = 𝑦)) |
12 | 11 | imbi2d 341 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝐼 ∈ 𝑉 → (𝑀 Σg (𝑈 ∘ 𝑥)) = 𝑥) ↔ (𝐼 ∈ 𝑉 → (𝑀 Σg (𝑈 ∘ 𝑦)) = 𝑦))) |
13 | | coeq2 5767 |
. . . . . 6
⊢ (𝑥 = (𝑦 ++ 〈“𝑧”〉) → (𝑈 ∘ 𝑥) = (𝑈 ∘ (𝑦 ++ 〈“𝑧”〉))) |
14 | 13 | oveq2d 7291 |
. . . . 5
⊢ (𝑥 = (𝑦 ++ 〈“𝑧”〉) → (𝑀 Σg (𝑈 ∘ 𝑥)) = (𝑀 Σg (𝑈 ∘ (𝑦 ++ 〈“𝑧”〉)))) |
15 | | id 22 |
. . . . 5
⊢ (𝑥 = (𝑦 ++ 〈“𝑧”〉) → 𝑥 = (𝑦 ++ 〈“𝑧”〉)) |
16 | 14, 15 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = (𝑦 ++ 〈“𝑧”〉) → ((𝑀 Σg (𝑈 ∘ 𝑥)) = 𝑥 ↔ (𝑀 Σg (𝑈 ∘ (𝑦 ++ 〈“𝑧”〉))) = (𝑦 ++ 〈“𝑧”〉))) |
17 | 16 | imbi2d 341 |
. . 3
⊢ (𝑥 = (𝑦 ++ 〈“𝑧”〉) → ((𝐼 ∈ 𝑉 → (𝑀 Σg (𝑈 ∘ 𝑥)) = 𝑥) ↔ (𝐼 ∈ 𝑉 → (𝑀 Σg (𝑈 ∘ (𝑦 ++ 〈“𝑧”〉))) = (𝑦 ++ 〈“𝑧”〉)))) |
18 | | coeq2 5767 |
. . . . . 6
⊢ (𝑥 = 𝑊 → (𝑈 ∘ 𝑥) = (𝑈 ∘ 𝑊)) |
19 | 18 | oveq2d 7291 |
. . . . 5
⊢ (𝑥 = 𝑊 → (𝑀 Σg (𝑈 ∘ 𝑥)) = (𝑀 Σg (𝑈 ∘ 𝑊))) |
20 | | id 22 |
. . . . 5
⊢ (𝑥 = 𝑊 → 𝑥 = 𝑊) |
21 | 19, 20 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = 𝑊 → ((𝑀 Σg (𝑈 ∘ 𝑥)) = 𝑥 ↔ (𝑀 Σg (𝑈 ∘ 𝑊)) = 𝑊)) |
22 | 21 | imbi2d 341 |
. . 3
⊢ (𝑥 = 𝑊 → ((𝐼 ∈ 𝑉 → (𝑀 Σg (𝑈 ∘ 𝑥)) = 𝑥) ↔ (𝐼 ∈ 𝑉 → (𝑀 Σg (𝑈 ∘ 𝑊)) = 𝑊))) |
23 | | frmdmnd.m |
. . . . . 6
⊢ 𝑀 = (freeMnd‘𝐼) |
24 | 23 | frmd0 18499 |
. . . . 5
⊢ ∅ =
(0g‘𝑀) |
25 | 24 | gsum0 18368 |
. . . 4
⊢ (𝑀 Σg
∅) = ∅ |
26 | 25 | a1i 11 |
. . 3
⊢ (𝐼 ∈ 𝑉 → (𝑀 Σg ∅) =
∅) |
27 | | oveq1 7282 |
. . . . . 6
⊢ ((𝑀 Σg
(𝑈 ∘ 𝑦)) = 𝑦 → ((𝑀 Σg (𝑈 ∘ 𝑦)) ++ 〈“𝑧”〉) = (𝑦 ++ 〈“𝑧”〉)) |
28 | | simprl 768 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → 𝑦 ∈ Word 𝐼) |
29 | | simprr 770 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → 𝑧 ∈ 𝐼) |
30 | 29 | s1cld 14308 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → 〈“𝑧”〉 ∈ Word 𝐼) |
31 | | frmdgsum.u |
. . . . . . . . . . . . 13
⊢ 𝑈 =
(varFMnd‘𝐼) |
32 | 31 | vrmdf 18497 |
. . . . . . . . . . . 12
⊢ (𝐼 ∈ 𝑉 → 𝑈:𝐼⟶Word 𝐼) |
33 | 32 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → 𝑈:𝐼⟶Word 𝐼) |
34 | | ccatco 14548 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ Word 𝐼 ∧ 〈“𝑧”〉 ∈ Word 𝐼 ∧ 𝑈:𝐼⟶Word 𝐼) → (𝑈 ∘ (𝑦 ++ 〈“𝑧”〉)) = ((𝑈 ∘ 𝑦) ++ (𝑈 ∘ 〈“𝑧”〉))) |
35 | 28, 30, 33, 34 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → (𝑈 ∘ (𝑦 ++ 〈“𝑧”〉)) = ((𝑈 ∘ 𝑦) ++ (𝑈 ∘ 〈“𝑧”〉))) |
36 | | s1co 14546 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝐼 ∧ 𝑈:𝐼⟶Word 𝐼) → (𝑈 ∘ 〈“𝑧”〉) = 〈“(𝑈‘𝑧)”〉) |
37 | 29, 33, 36 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → (𝑈 ∘ 〈“𝑧”〉) = 〈“(𝑈‘𝑧)”〉) |
38 | 31 | vrmdval 18496 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝐼) → (𝑈‘𝑧) = 〈“𝑧”〉) |
39 | 38 | adantrl 713 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → (𝑈‘𝑧) = 〈“𝑧”〉) |
40 | 39 | s1eqd 14306 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → 〈“(𝑈‘𝑧)”〉 =
〈“〈“𝑧”〉”〉) |
41 | 37, 40 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → (𝑈 ∘ 〈“𝑧”〉) =
〈“〈“𝑧”〉”〉) |
42 | 41 | oveq2d 7291 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → ((𝑈 ∘ 𝑦) ++ (𝑈 ∘ 〈“𝑧”〉)) = ((𝑈 ∘ 𝑦) ++ 〈“〈“𝑧”〉”〉)) |
43 | 35, 42 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → (𝑈 ∘ (𝑦 ++ 〈“𝑧”〉)) = ((𝑈 ∘ 𝑦) ++ 〈“〈“𝑧”〉”〉)) |
44 | 43 | oveq2d 7291 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → (𝑀 Σg (𝑈 ∘ (𝑦 ++ 〈“𝑧”〉))) = (𝑀 Σg ((𝑈 ∘ 𝑦) ++ 〈“〈“𝑧”〉”〉))) |
45 | 23 | frmdmnd 18498 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Mnd) |
46 | 45 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → 𝑀 ∈ Mnd) |
47 | | wrdco 14544 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ Word 𝐼 ∧ 𝑈:𝐼⟶Word 𝐼) → (𝑈 ∘ 𝑦) ∈ Word Word 𝐼) |
48 | 28, 33, 47 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → (𝑈 ∘ 𝑦) ∈ Word Word 𝐼) |
49 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑀) =
(Base‘𝑀) |
50 | 23, 49 | frmdbas 18491 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∈ 𝑉 → (Base‘𝑀) = Word 𝐼) |
51 | 50 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → (Base‘𝑀) = Word 𝐼) |
52 | | wrdeq 14239 |
. . . . . . . . . . . 12
⊢
((Base‘𝑀) =
Word 𝐼 → Word
(Base‘𝑀) = Word Word
𝐼) |
53 | 51, 52 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → Word (Base‘𝑀) = Word Word 𝐼) |
54 | 48, 53 | eleqtrrd 2842 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → (𝑈 ∘ 𝑦) ∈ Word (Base‘𝑀)) |
55 | 30, 51 | eleqtrrd 2842 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → 〈“𝑧”〉 ∈ (Base‘𝑀)) |
56 | 55 | s1cld 14308 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → 〈“〈“𝑧”〉”〉
∈ Word (Base‘𝑀)) |
57 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(+g‘𝑀) = (+g‘𝑀) |
58 | 49, 57 | gsumccat 18480 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ Mnd ∧ (𝑈 ∘ 𝑦) ∈ Word (Base‘𝑀) ∧ 〈“〈“𝑧”〉”〉
∈ Word (Base‘𝑀))
→ (𝑀
Σg ((𝑈 ∘ 𝑦) ++ 〈“〈“𝑧”〉”〉)) =
((𝑀
Σg (𝑈 ∘ 𝑦))(+g‘𝑀)(𝑀 Σg
〈“〈“𝑧”〉”〉))) |
59 | 46, 54, 56, 58 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → (𝑀 Σg ((𝑈 ∘ 𝑦) ++ 〈“〈“𝑧”〉”〉)) =
((𝑀
Σg (𝑈 ∘ 𝑦))(+g‘𝑀)(𝑀 Σg
〈“〈“𝑧”〉”〉))) |
60 | 49 | gsumws1 18476 |
. . . . . . . . . . . 12
⊢
(〈“𝑧”〉 ∈ (Base‘𝑀) → (𝑀 Σg
〈“〈“𝑧”〉”〉) =
〈“𝑧”〉) |
61 | 55, 60 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → (𝑀 Σg
〈“〈“𝑧”〉”〉) =
〈“𝑧”〉) |
62 | 61 | oveq2d 7291 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → ((𝑀 Σg (𝑈 ∘ 𝑦))(+g‘𝑀)(𝑀 Σg
〈“〈“𝑧”〉”〉)) = ((𝑀 Σg
(𝑈 ∘ 𝑦))(+g‘𝑀)〈“𝑧”〉)) |
63 | 49 | gsumwcl 18477 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ Mnd ∧ (𝑈 ∘ 𝑦) ∈ Word (Base‘𝑀)) → (𝑀 Σg (𝑈 ∘ 𝑦)) ∈ (Base‘𝑀)) |
64 | 46, 54, 63 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → (𝑀 Σg (𝑈 ∘ 𝑦)) ∈ (Base‘𝑀)) |
65 | 23, 49, 57 | frmdadd 18494 |
. . . . . . . . . . 11
⊢ (((𝑀 Σg
(𝑈 ∘ 𝑦)) ∈ (Base‘𝑀) ∧ 〈“𝑧”〉 ∈
(Base‘𝑀)) →
((𝑀
Σg (𝑈 ∘ 𝑦))(+g‘𝑀)〈“𝑧”〉) = ((𝑀 Σg (𝑈 ∘ 𝑦)) ++ 〈“𝑧”〉)) |
66 | 64, 55, 65 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → ((𝑀 Σg (𝑈 ∘ 𝑦))(+g‘𝑀)〈“𝑧”〉) = ((𝑀 Σg (𝑈 ∘ 𝑦)) ++ 〈“𝑧”〉)) |
67 | 62, 66 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → ((𝑀 Σg (𝑈 ∘ 𝑦))(+g‘𝑀)(𝑀 Σg
〈“〈“𝑧”〉”〉)) = ((𝑀 Σg
(𝑈 ∘ 𝑦)) ++ 〈“𝑧”〉)) |
68 | 59, 67 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → (𝑀 Σg ((𝑈 ∘ 𝑦) ++ 〈“〈“𝑧”〉”〉)) =
((𝑀
Σg (𝑈 ∘ 𝑦)) ++ 〈“𝑧”〉)) |
69 | 44, 68 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → (𝑀 Σg (𝑈 ∘ (𝑦 ++ 〈“𝑧”〉))) = ((𝑀 Σg (𝑈 ∘ 𝑦)) ++ 〈“𝑧”〉)) |
70 | 69 | eqeq1d 2740 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → ((𝑀 Σg (𝑈 ∘ (𝑦 ++ 〈“𝑧”〉))) = (𝑦 ++ 〈“𝑧”〉) ↔ ((𝑀 Σg (𝑈 ∘ 𝑦)) ++ 〈“𝑧”〉) = (𝑦 ++ 〈“𝑧”〉))) |
71 | 27, 70 | syl5ibr 245 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼)) → ((𝑀 Σg (𝑈 ∘ 𝑦)) = 𝑦 → (𝑀 Σg (𝑈 ∘ (𝑦 ++ 〈“𝑧”〉))) = (𝑦 ++ 〈“𝑧”〉))) |
72 | 71 | expcom 414 |
. . . 4
⊢ ((𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼) → (𝐼 ∈ 𝑉 → ((𝑀 Σg (𝑈 ∘ 𝑦)) = 𝑦 → (𝑀 Σg (𝑈 ∘ (𝑦 ++ 〈“𝑧”〉))) = (𝑦 ++ 〈“𝑧”〉)))) |
73 | 72 | a2d 29 |
. . 3
⊢ ((𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ 𝐼) → ((𝐼 ∈ 𝑉 → (𝑀 Σg (𝑈 ∘ 𝑦)) = 𝑦) → (𝐼 ∈ 𝑉 → (𝑀 Σg (𝑈 ∘ (𝑦 ++ 〈“𝑧”〉))) = (𝑦 ++ 〈“𝑧”〉)))) |
74 | 7, 12, 17, 22, 26, 73 | wrdind 14435 |
. 2
⊢ (𝑊 ∈ Word 𝐼 → (𝐼 ∈ 𝑉 → (𝑀 Σg (𝑈 ∘ 𝑊)) = 𝑊)) |
75 | 74 | impcom 408 |
1
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐼) → (𝑀 Σg (𝑈 ∘ 𝑊)) = 𝑊) |