MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdgsum Structured version   Visualization version   GIF version

Theorem frmdgsum 18501
Description: Any word in a free monoid can be expressed as the sum of the singletons composing it. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
frmdmnd.m 𝑀 = (freeMnd‘𝐼)
frmdgsum.u 𝑈 = (varFMnd𝐼)
Assertion
Ref Expression
frmdgsum ((𝐼𝑉𝑊 ∈ Word 𝐼) → (𝑀 Σg (𝑈𝑊)) = 𝑊)

Proof of Theorem frmdgsum
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coeq2 5767 . . . . . . 7 (𝑥 = ∅ → (𝑈𝑥) = (𝑈 ∘ ∅))
2 co02 6164 . . . . . . 7 (𝑈 ∘ ∅) = ∅
31, 2eqtrdi 2794 . . . . . 6 (𝑥 = ∅ → (𝑈𝑥) = ∅)
43oveq2d 7291 . . . . 5 (𝑥 = ∅ → (𝑀 Σg (𝑈𝑥)) = (𝑀 Σg ∅))
5 id 22 . . . . 5 (𝑥 = ∅ → 𝑥 = ∅)
64, 5eqeq12d 2754 . . . 4 (𝑥 = ∅ → ((𝑀 Σg (𝑈𝑥)) = 𝑥 ↔ (𝑀 Σg ∅) = ∅))
76imbi2d 341 . . 3 (𝑥 = ∅ → ((𝐼𝑉 → (𝑀 Σg (𝑈𝑥)) = 𝑥) ↔ (𝐼𝑉 → (𝑀 Σg ∅) = ∅)))
8 coeq2 5767 . . . . . 6 (𝑥 = 𝑦 → (𝑈𝑥) = (𝑈𝑦))
98oveq2d 7291 . . . . 5 (𝑥 = 𝑦 → (𝑀 Σg (𝑈𝑥)) = (𝑀 Σg (𝑈𝑦)))
10 id 22 . . . . 5 (𝑥 = 𝑦𝑥 = 𝑦)
119, 10eqeq12d 2754 . . . 4 (𝑥 = 𝑦 → ((𝑀 Σg (𝑈𝑥)) = 𝑥 ↔ (𝑀 Σg (𝑈𝑦)) = 𝑦))
1211imbi2d 341 . . 3 (𝑥 = 𝑦 → ((𝐼𝑉 → (𝑀 Σg (𝑈𝑥)) = 𝑥) ↔ (𝐼𝑉 → (𝑀 Σg (𝑈𝑦)) = 𝑦)))
13 coeq2 5767 . . . . . 6 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝑈𝑥) = (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩)))
1413oveq2d 7291 . . . . 5 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝑀 Σg (𝑈𝑥)) = (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))))
15 id 22 . . . . 5 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → 𝑥 = (𝑦 ++ ⟨“𝑧”⟩))
1614, 15eqeq12d 2754 . . . 4 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝑀 Σg (𝑈𝑥)) = 𝑥 ↔ (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑦 ++ ⟨“𝑧”⟩)))
1716imbi2d 341 . . 3 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝐼𝑉 → (𝑀 Σg (𝑈𝑥)) = 𝑥) ↔ (𝐼𝑉 → (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑦 ++ ⟨“𝑧”⟩))))
18 coeq2 5767 . . . . . 6 (𝑥 = 𝑊 → (𝑈𝑥) = (𝑈𝑊))
1918oveq2d 7291 . . . . 5 (𝑥 = 𝑊 → (𝑀 Σg (𝑈𝑥)) = (𝑀 Σg (𝑈𝑊)))
20 id 22 . . . . 5 (𝑥 = 𝑊𝑥 = 𝑊)
2119, 20eqeq12d 2754 . . . 4 (𝑥 = 𝑊 → ((𝑀 Σg (𝑈𝑥)) = 𝑥 ↔ (𝑀 Σg (𝑈𝑊)) = 𝑊))
2221imbi2d 341 . . 3 (𝑥 = 𝑊 → ((𝐼𝑉 → (𝑀 Σg (𝑈𝑥)) = 𝑥) ↔ (𝐼𝑉 → (𝑀 Σg (𝑈𝑊)) = 𝑊)))
23 frmdmnd.m . . . . . 6 𝑀 = (freeMnd‘𝐼)
2423frmd0 18499 . . . . 5 ∅ = (0g𝑀)
2524gsum0 18368 . . . 4 (𝑀 Σg ∅) = ∅
2625a1i 11 . . 3 (𝐼𝑉 → (𝑀 Σg ∅) = ∅)
27 oveq1 7282 . . . . . 6 ((𝑀 Σg (𝑈𝑦)) = 𝑦 → ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩) = (𝑦 ++ ⟨“𝑧”⟩))
28 simprl 768 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → 𝑦 ∈ Word 𝐼)
29 simprr 770 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → 𝑧𝐼)
3029s1cld 14308 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ⟨“𝑧”⟩ ∈ Word 𝐼)
31 frmdgsum.u . . . . . . . . . . . . 13 𝑈 = (varFMnd𝐼)
3231vrmdf 18497 . . . . . . . . . . . 12 (𝐼𝑉𝑈:𝐼⟶Word 𝐼)
3332adantr 481 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → 𝑈:𝐼⟶Word 𝐼)
34 ccatco 14548 . . . . . . . . . . 11 ((𝑦 ∈ Word 𝐼 ∧ ⟨“𝑧”⟩ ∈ Word 𝐼𝑈:𝐼⟶Word 𝐼) → (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩)) = ((𝑈𝑦) ++ (𝑈 ∘ ⟨“𝑧”⟩)))
3528, 30, 33, 34syl3anc 1370 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩)) = ((𝑈𝑦) ++ (𝑈 ∘ ⟨“𝑧”⟩)))
36 s1co 14546 . . . . . . . . . . . . 13 ((𝑧𝐼𝑈:𝐼⟶Word 𝐼) → (𝑈 ∘ ⟨“𝑧”⟩) = ⟨“(𝑈𝑧)”⟩)
3729, 33, 36syl2anc 584 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈 ∘ ⟨“𝑧”⟩) = ⟨“(𝑈𝑧)”⟩)
3831vrmdval 18496 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑧𝐼) → (𝑈𝑧) = ⟨“𝑧”⟩)
3938adantrl 713 . . . . . . . . . . . . 13 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈𝑧) = ⟨“𝑧”⟩)
4039s1eqd 14306 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ⟨“(𝑈𝑧)”⟩ = ⟨“⟨“𝑧”⟩”⟩)
4137, 40eqtrd 2778 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈 ∘ ⟨“𝑧”⟩) = ⟨“⟨“𝑧”⟩”⟩)
4241oveq2d 7291 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ((𝑈𝑦) ++ (𝑈 ∘ ⟨“𝑧”⟩)) = ((𝑈𝑦) ++ ⟨“⟨“𝑧”⟩”⟩))
4335, 42eqtrd 2778 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩)) = ((𝑈𝑦) ++ ⟨“⟨“𝑧”⟩”⟩))
4443oveq2d 7291 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑀 Σg ((𝑈𝑦) ++ ⟨“⟨“𝑧”⟩”⟩)))
4523frmdmnd 18498 . . . . . . . . . . 11 (𝐼𝑉𝑀 ∈ Mnd)
4645adantr 481 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → 𝑀 ∈ Mnd)
47 wrdco 14544 . . . . . . . . . . . 12 ((𝑦 ∈ Word 𝐼𝑈:𝐼⟶Word 𝐼) → (𝑈𝑦) ∈ Word Word 𝐼)
4828, 33, 47syl2anc 584 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈𝑦) ∈ Word Word 𝐼)
49 eqid 2738 . . . . . . . . . . . . . 14 (Base‘𝑀) = (Base‘𝑀)
5023, 49frmdbas 18491 . . . . . . . . . . . . 13 (𝐼𝑉 → (Base‘𝑀) = Word 𝐼)
5150adantr 481 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (Base‘𝑀) = Word 𝐼)
52 wrdeq 14239 . . . . . . . . . . . 12 ((Base‘𝑀) = Word 𝐼 → Word (Base‘𝑀) = Word Word 𝐼)
5351, 52syl 17 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → Word (Base‘𝑀) = Word Word 𝐼)
5448, 53eleqtrrd 2842 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈𝑦) ∈ Word (Base‘𝑀))
5530, 51eleqtrrd 2842 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ⟨“𝑧”⟩ ∈ (Base‘𝑀))
5655s1cld 14308 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ⟨“⟨“𝑧”⟩”⟩ ∈ Word (Base‘𝑀))
57 eqid 2738 . . . . . . . . . . 11 (+g𝑀) = (+g𝑀)
5849, 57gsumccat 18480 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ (𝑈𝑦) ∈ Word (Base‘𝑀) ∧ ⟨“⟨“𝑧”⟩”⟩ ∈ Word (Base‘𝑀)) → (𝑀 Σg ((𝑈𝑦) ++ ⟨“⟨“𝑧”⟩”⟩)) = ((𝑀 Σg (𝑈𝑦))(+g𝑀)(𝑀 Σg ⟨“⟨“𝑧”⟩”⟩)))
5946, 54, 56, 58syl3anc 1370 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑀 Σg ((𝑈𝑦) ++ ⟨“⟨“𝑧”⟩”⟩)) = ((𝑀 Σg (𝑈𝑦))(+g𝑀)(𝑀 Σg ⟨“⟨“𝑧”⟩”⟩)))
6049gsumws1 18476 . . . . . . . . . . . 12 (⟨“𝑧”⟩ ∈ (Base‘𝑀) → (𝑀 Σg ⟨“⟨“𝑧”⟩”⟩) = ⟨“𝑧”⟩)
6155, 60syl 17 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑀 Σg ⟨“⟨“𝑧”⟩”⟩) = ⟨“𝑧”⟩)
6261oveq2d 7291 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ((𝑀 Σg (𝑈𝑦))(+g𝑀)(𝑀 Σg ⟨“⟨“𝑧”⟩”⟩)) = ((𝑀 Σg (𝑈𝑦))(+g𝑀)⟨“𝑧”⟩))
6349gsumwcl 18477 . . . . . . . . . . . 12 ((𝑀 ∈ Mnd ∧ (𝑈𝑦) ∈ Word (Base‘𝑀)) → (𝑀 Σg (𝑈𝑦)) ∈ (Base‘𝑀))
6446, 54, 63syl2anc 584 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑀 Σg (𝑈𝑦)) ∈ (Base‘𝑀))
6523, 49, 57frmdadd 18494 . . . . . . . . . . 11 (((𝑀 Σg (𝑈𝑦)) ∈ (Base‘𝑀) ∧ ⟨“𝑧”⟩ ∈ (Base‘𝑀)) → ((𝑀 Σg (𝑈𝑦))(+g𝑀)⟨“𝑧”⟩) = ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩))
6664, 55, 65syl2anc 584 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ((𝑀 Σg (𝑈𝑦))(+g𝑀)⟨“𝑧”⟩) = ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩))
6762, 66eqtrd 2778 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ((𝑀 Σg (𝑈𝑦))(+g𝑀)(𝑀 Σg ⟨“⟨“𝑧”⟩”⟩)) = ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩))
6859, 67eqtrd 2778 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑀 Σg ((𝑈𝑦) ++ ⟨“⟨“𝑧”⟩”⟩)) = ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩))
6944, 68eqtrd 2778 . . . . . . 7 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩))
7069eqeq1d 2740 . . . . . 6 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ((𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑦 ++ ⟨“𝑧”⟩) ↔ ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩) = (𝑦 ++ ⟨“𝑧”⟩)))
7127, 70syl5ibr 245 . . . . 5 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ((𝑀 Σg (𝑈𝑦)) = 𝑦 → (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑦 ++ ⟨“𝑧”⟩)))
7271expcom 414 . . . 4 ((𝑦 ∈ Word 𝐼𝑧𝐼) → (𝐼𝑉 → ((𝑀 Σg (𝑈𝑦)) = 𝑦 → (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑦 ++ ⟨“𝑧”⟩))))
7372a2d 29 . . 3 ((𝑦 ∈ Word 𝐼𝑧𝐼) → ((𝐼𝑉 → (𝑀 Σg (𝑈𝑦)) = 𝑦) → (𝐼𝑉 → (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑦 ++ ⟨“𝑧”⟩))))
747, 12, 17, 22, 26, 73wrdind 14435 . 2 (𝑊 ∈ Word 𝐼 → (𝐼𝑉 → (𝑀 Σg (𝑈𝑊)) = 𝑊))
7574impcom 408 1 ((𝐼𝑉𝑊 ∈ Word 𝐼) → (𝑀 Σg (𝑈𝑊)) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  c0 4256  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  Word cword 14217   ++ cconcat 14273  ⟨“cs1 14300  Basecbs 16912  +gcplusg 16962   Σg cgsu 17151  Mndcmnd 18385  freeMndcfrmd 18486  varFMndcvrmd 18487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-gsum 17153  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-frmd 18488  df-vrmd 18489
This theorem is referenced by:  frmdss2  18502  frmdup3lem  18505  frgpup3lem  19383
  Copyright terms: Public domain W3C validator