MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdgsum Structured version   Visualization version   GIF version

Theorem frmdgsum 18416
Description: Any word in a free monoid can be expressed as the sum of the singletons composing it. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
frmdmnd.m 𝑀 = (freeMnd‘𝐼)
frmdgsum.u 𝑈 = (varFMnd𝐼)
Assertion
Ref Expression
frmdgsum ((𝐼𝑉𝑊 ∈ Word 𝐼) → (𝑀 Σg (𝑈𝑊)) = 𝑊)

Proof of Theorem frmdgsum
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coeq2 5756 . . . . . . 7 (𝑥 = ∅ → (𝑈𝑥) = (𝑈 ∘ ∅))
2 co02 6153 . . . . . . 7 (𝑈 ∘ ∅) = ∅
31, 2eqtrdi 2795 . . . . . 6 (𝑥 = ∅ → (𝑈𝑥) = ∅)
43oveq2d 7271 . . . . 5 (𝑥 = ∅ → (𝑀 Σg (𝑈𝑥)) = (𝑀 Σg ∅))
5 id 22 . . . . 5 (𝑥 = ∅ → 𝑥 = ∅)
64, 5eqeq12d 2754 . . . 4 (𝑥 = ∅ → ((𝑀 Σg (𝑈𝑥)) = 𝑥 ↔ (𝑀 Σg ∅) = ∅))
76imbi2d 340 . . 3 (𝑥 = ∅ → ((𝐼𝑉 → (𝑀 Σg (𝑈𝑥)) = 𝑥) ↔ (𝐼𝑉 → (𝑀 Σg ∅) = ∅)))
8 coeq2 5756 . . . . . 6 (𝑥 = 𝑦 → (𝑈𝑥) = (𝑈𝑦))
98oveq2d 7271 . . . . 5 (𝑥 = 𝑦 → (𝑀 Σg (𝑈𝑥)) = (𝑀 Σg (𝑈𝑦)))
10 id 22 . . . . 5 (𝑥 = 𝑦𝑥 = 𝑦)
119, 10eqeq12d 2754 . . . 4 (𝑥 = 𝑦 → ((𝑀 Σg (𝑈𝑥)) = 𝑥 ↔ (𝑀 Σg (𝑈𝑦)) = 𝑦))
1211imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐼𝑉 → (𝑀 Σg (𝑈𝑥)) = 𝑥) ↔ (𝐼𝑉 → (𝑀 Σg (𝑈𝑦)) = 𝑦)))
13 coeq2 5756 . . . . . 6 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝑈𝑥) = (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩)))
1413oveq2d 7271 . . . . 5 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝑀 Σg (𝑈𝑥)) = (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))))
15 id 22 . . . . 5 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → 𝑥 = (𝑦 ++ ⟨“𝑧”⟩))
1614, 15eqeq12d 2754 . . . 4 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝑀 Σg (𝑈𝑥)) = 𝑥 ↔ (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑦 ++ ⟨“𝑧”⟩)))
1716imbi2d 340 . . 3 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝐼𝑉 → (𝑀 Σg (𝑈𝑥)) = 𝑥) ↔ (𝐼𝑉 → (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑦 ++ ⟨“𝑧”⟩))))
18 coeq2 5756 . . . . . 6 (𝑥 = 𝑊 → (𝑈𝑥) = (𝑈𝑊))
1918oveq2d 7271 . . . . 5 (𝑥 = 𝑊 → (𝑀 Σg (𝑈𝑥)) = (𝑀 Σg (𝑈𝑊)))
20 id 22 . . . . 5 (𝑥 = 𝑊𝑥 = 𝑊)
2119, 20eqeq12d 2754 . . . 4 (𝑥 = 𝑊 → ((𝑀 Σg (𝑈𝑥)) = 𝑥 ↔ (𝑀 Σg (𝑈𝑊)) = 𝑊))
2221imbi2d 340 . . 3 (𝑥 = 𝑊 → ((𝐼𝑉 → (𝑀 Σg (𝑈𝑥)) = 𝑥) ↔ (𝐼𝑉 → (𝑀 Σg (𝑈𝑊)) = 𝑊)))
23 frmdmnd.m . . . . . 6 𝑀 = (freeMnd‘𝐼)
2423frmd0 18414 . . . . 5 ∅ = (0g𝑀)
2524gsum0 18283 . . . 4 (𝑀 Σg ∅) = ∅
2625a1i 11 . . 3 (𝐼𝑉 → (𝑀 Σg ∅) = ∅)
27 oveq1 7262 . . . . . 6 ((𝑀 Σg (𝑈𝑦)) = 𝑦 → ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩) = (𝑦 ++ ⟨“𝑧”⟩))
28 simprl 767 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → 𝑦 ∈ Word 𝐼)
29 simprr 769 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → 𝑧𝐼)
3029s1cld 14236 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ⟨“𝑧”⟩ ∈ Word 𝐼)
31 frmdgsum.u . . . . . . . . . . . . 13 𝑈 = (varFMnd𝐼)
3231vrmdf 18412 . . . . . . . . . . . 12 (𝐼𝑉𝑈:𝐼⟶Word 𝐼)
3332adantr 480 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → 𝑈:𝐼⟶Word 𝐼)
34 ccatco 14476 . . . . . . . . . . 11 ((𝑦 ∈ Word 𝐼 ∧ ⟨“𝑧”⟩ ∈ Word 𝐼𝑈:𝐼⟶Word 𝐼) → (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩)) = ((𝑈𝑦) ++ (𝑈 ∘ ⟨“𝑧”⟩)))
3528, 30, 33, 34syl3anc 1369 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩)) = ((𝑈𝑦) ++ (𝑈 ∘ ⟨“𝑧”⟩)))
36 s1co 14474 . . . . . . . . . . . . 13 ((𝑧𝐼𝑈:𝐼⟶Word 𝐼) → (𝑈 ∘ ⟨“𝑧”⟩) = ⟨“(𝑈𝑧)”⟩)
3729, 33, 36syl2anc 583 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈 ∘ ⟨“𝑧”⟩) = ⟨“(𝑈𝑧)”⟩)
3831vrmdval 18411 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑧𝐼) → (𝑈𝑧) = ⟨“𝑧”⟩)
3938adantrl 712 . . . . . . . . . . . . 13 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈𝑧) = ⟨“𝑧”⟩)
4039s1eqd 14234 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ⟨“(𝑈𝑧)”⟩ = ⟨“⟨“𝑧”⟩”⟩)
4137, 40eqtrd 2778 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈 ∘ ⟨“𝑧”⟩) = ⟨“⟨“𝑧”⟩”⟩)
4241oveq2d 7271 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ((𝑈𝑦) ++ (𝑈 ∘ ⟨“𝑧”⟩)) = ((𝑈𝑦) ++ ⟨“⟨“𝑧”⟩”⟩))
4335, 42eqtrd 2778 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩)) = ((𝑈𝑦) ++ ⟨“⟨“𝑧”⟩”⟩))
4443oveq2d 7271 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑀 Σg ((𝑈𝑦) ++ ⟨“⟨“𝑧”⟩”⟩)))
4523frmdmnd 18413 . . . . . . . . . . 11 (𝐼𝑉𝑀 ∈ Mnd)
4645adantr 480 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → 𝑀 ∈ Mnd)
47 wrdco 14472 . . . . . . . . . . . 12 ((𝑦 ∈ Word 𝐼𝑈:𝐼⟶Word 𝐼) → (𝑈𝑦) ∈ Word Word 𝐼)
4828, 33, 47syl2anc 583 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈𝑦) ∈ Word Word 𝐼)
49 eqid 2738 . . . . . . . . . . . . . 14 (Base‘𝑀) = (Base‘𝑀)
5023, 49frmdbas 18406 . . . . . . . . . . . . 13 (𝐼𝑉 → (Base‘𝑀) = Word 𝐼)
5150adantr 480 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (Base‘𝑀) = Word 𝐼)
52 wrdeq 14167 . . . . . . . . . . . 12 ((Base‘𝑀) = Word 𝐼 → Word (Base‘𝑀) = Word Word 𝐼)
5351, 52syl 17 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → Word (Base‘𝑀) = Word Word 𝐼)
5448, 53eleqtrrd 2842 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈𝑦) ∈ Word (Base‘𝑀))
5530, 51eleqtrrd 2842 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ⟨“𝑧”⟩ ∈ (Base‘𝑀))
5655s1cld 14236 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ⟨“⟨“𝑧”⟩”⟩ ∈ Word (Base‘𝑀))
57 eqid 2738 . . . . . . . . . . 11 (+g𝑀) = (+g𝑀)
5849, 57gsumccat 18395 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ (𝑈𝑦) ∈ Word (Base‘𝑀) ∧ ⟨“⟨“𝑧”⟩”⟩ ∈ Word (Base‘𝑀)) → (𝑀 Σg ((𝑈𝑦) ++ ⟨“⟨“𝑧”⟩”⟩)) = ((𝑀 Σg (𝑈𝑦))(+g𝑀)(𝑀 Σg ⟨“⟨“𝑧”⟩”⟩)))
5946, 54, 56, 58syl3anc 1369 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑀 Σg ((𝑈𝑦) ++ ⟨“⟨“𝑧”⟩”⟩)) = ((𝑀 Σg (𝑈𝑦))(+g𝑀)(𝑀 Σg ⟨“⟨“𝑧”⟩”⟩)))
6049gsumws1 18391 . . . . . . . . . . . 12 (⟨“𝑧”⟩ ∈ (Base‘𝑀) → (𝑀 Σg ⟨“⟨“𝑧”⟩”⟩) = ⟨“𝑧”⟩)
6155, 60syl 17 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑀 Σg ⟨“⟨“𝑧”⟩”⟩) = ⟨“𝑧”⟩)
6261oveq2d 7271 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ((𝑀 Σg (𝑈𝑦))(+g𝑀)(𝑀 Σg ⟨“⟨“𝑧”⟩”⟩)) = ((𝑀 Σg (𝑈𝑦))(+g𝑀)⟨“𝑧”⟩))
6349gsumwcl 18392 . . . . . . . . . . . 12 ((𝑀 ∈ Mnd ∧ (𝑈𝑦) ∈ Word (Base‘𝑀)) → (𝑀 Σg (𝑈𝑦)) ∈ (Base‘𝑀))
6446, 54, 63syl2anc 583 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑀 Σg (𝑈𝑦)) ∈ (Base‘𝑀))
6523, 49, 57frmdadd 18409 . . . . . . . . . . 11 (((𝑀 Σg (𝑈𝑦)) ∈ (Base‘𝑀) ∧ ⟨“𝑧”⟩ ∈ (Base‘𝑀)) → ((𝑀 Σg (𝑈𝑦))(+g𝑀)⟨“𝑧”⟩) = ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩))
6664, 55, 65syl2anc 583 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ((𝑀 Σg (𝑈𝑦))(+g𝑀)⟨“𝑧”⟩) = ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩))
6762, 66eqtrd 2778 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ((𝑀 Σg (𝑈𝑦))(+g𝑀)(𝑀 Σg ⟨“⟨“𝑧”⟩”⟩)) = ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩))
6859, 67eqtrd 2778 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑀 Σg ((𝑈𝑦) ++ ⟨“⟨“𝑧”⟩”⟩)) = ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩))
6944, 68eqtrd 2778 . . . . . . 7 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩))
7069eqeq1d 2740 . . . . . 6 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ((𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑦 ++ ⟨“𝑧”⟩) ↔ ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩) = (𝑦 ++ ⟨“𝑧”⟩)))
7127, 70syl5ibr 245 . . . . 5 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ((𝑀 Σg (𝑈𝑦)) = 𝑦 → (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑦 ++ ⟨“𝑧”⟩)))
7271expcom 413 . . . 4 ((𝑦 ∈ Word 𝐼𝑧𝐼) → (𝐼𝑉 → ((𝑀 Σg (𝑈𝑦)) = 𝑦 → (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑦 ++ ⟨“𝑧”⟩))))
7372a2d 29 . . 3 ((𝑦 ∈ Word 𝐼𝑧𝐼) → ((𝐼𝑉 → (𝑀 Σg (𝑈𝑦)) = 𝑦) → (𝐼𝑉 → (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑦 ++ ⟨“𝑧”⟩))))
747, 12, 17, 22, 26, 73wrdind 14363 . 2 (𝑊 ∈ Word 𝐼 → (𝐼𝑉 → (𝑀 Σg (𝑈𝑊)) = 𝑊))
7574impcom 407 1 ((𝐼𝑉𝑊 ∈ Word 𝐼) → (𝑀 Σg (𝑈𝑊)) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  c0 4253  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  Word cword 14145   ++ cconcat 14201  ⟨“cs1 14228  Basecbs 16840  +gcplusg 16888   Σg cgsu 17068  Mndcmnd 18300  freeMndcfrmd 18401  varFMndcvrmd 18402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-frmd 18403  df-vrmd 18404
This theorem is referenced by:  frmdss2  18417  frmdup3lem  18420  frgpup3lem  19298
  Copyright terms: Public domain W3C validator