MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdup1 Structured version   Visualization version   GIF version

Theorem frmdup1 17714
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
frmdup.m 𝑀 = (freeMnd‘𝐼)
frmdup.b 𝐵 = (Base‘𝐺)
frmdup.e 𝐸 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))
frmdup.g (𝜑𝐺 ∈ Mnd)
frmdup.i (𝜑𝐼𝑋)
frmdup.a (𝜑𝐴:𝐼𝐵)
Assertion
Ref Expression
frmdup1 (𝜑𝐸 ∈ (𝑀 MndHom 𝐺))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐺   𝜑,𝑥   𝑥,𝐼
Allowed substitution hints:   𝐸(𝑥)   𝑀(𝑥)   𝑋(𝑥)

Proof of Theorem frmdup1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frmdup.i . . . 4 (𝜑𝐼𝑋)
2 frmdup.m . . . . 5 𝑀 = (freeMnd‘𝐼)
32frmdmnd 17709 . . . 4 (𝐼𝑋𝑀 ∈ Mnd)
41, 3syl 17 . . 3 (𝜑𝑀 ∈ Mnd)
5 frmdup.g . . 3 (𝜑𝐺 ∈ Mnd)
64, 5jca 508 . 2 (𝜑 → (𝑀 ∈ Mnd ∧ 𝐺 ∈ Mnd))
75adantr 473 . . . . . 6 ((𝜑𝑥 ∈ Word 𝐼) → 𝐺 ∈ Mnd)
8 simpr 478 . . . . . . 7 ((𝜑𝑥 ∈ Word 𝐼) → 𝑥 ∈ Word 𝐼)
9 frmdup.a . . . . . . . 8 (𝜑𝐴:𝐼𝐵)
109adantr 473 . . . . . . 7 ((𝜑𝑥 ∈ Word 𝐼) → 𝐴:𝐼𝐵)
11 wrdco 13913 . . . . . . 7 ((𝑥 ∈ Word 𝐼𝐴:𝐼𝐵) → (𝐴𝑥) ∈ Word 𝐵)
128, 10, 11syl2anc 580 . . . . . 6 ((𝜑𝑥 ∈ Word 𝐼) → (𝐴𝑥) ∈ Word 𝐵)
13 frmdup.b . . . . . . 7 𝐵 = (Base‘𝐺)
1413gsumwcl 17689 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝐴𝑥) ∈ Word 𝐵) → (𝐺 Σg (𝐴𝑥)) ∈ 𝐵)
157, 12, 14syl2anc 580 . . . . 5 ((𝜑𝑥 ∈ Word 𝐼) → (𝐺 Σg (𝐴𝑥)) ∈ 𝐵)
16 frmdup.e . . . . 5 𝐸 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))
1715, 16fmptd 6608 . . . 4 (𝜑𝐸:Word 𝐼𝐵)
18 eqid 2797 . . . . . . 7 (Base‘𝑀) = (Base‘𝑀)
192, 18frmdbas 17702 . . . . . 6 (𝐼𝑋 → (Base‘𝑀) = Word 𝐼)
201, 19syl 17 . . . . 5 (𝜑 → (Base‘𝑀) = Word 𝐼)
2120feq2d 6240 . . . 4 (𝜑 → (𝐸:(Base‘𝑀)⟶𝐵𝐸:Word 𝐼𝐵))
2217, 21mpbird 249 . . 3 (𝜑𝐸:(Base‘𝑀)⟶𝐵)
232, 18frmdelbas 17703 . . . . . . . . 9 (𝑦 ∈ (Base‘𝑀) → 𝑦 ∈ Word 𝐼)
2423ad2antrl 720 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑦 ∈ Word 𝐼)
252, 18frmdelbas 17703 . . . . . . . . 9 (𝑧 ∈ (Base‘𝑀) → 𝑧 ∈ Word 𝐼)
2625ad2antll 721 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑧 ∈ Word 𝐼)
279adantr 473 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝐴:𝐼𝐵)
28 ccatco 13917 . . . . . . . 8 ((𝑦 ∈ Word 𝐼𝑧 ∈ Word 𝐼𝐴:𝐼𝐵) → (𝐴 ∘ (𝑦 ++ 𝑧)) = ((𝐴𝑦) ++ (𝐴𝑧)))
2924, 26, 27, 28syl3anc 1491 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐴 ∘ (𝑦 ++ 𝑧)) = ((𝐴𝑦) ++ (𝐴𝑧)))
3029oveq2d 6892 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐺 Σg (𝐴 ∘ (𝑦 ++ 𝑧))) = (𝐺 Σg ((𝐴𝑦) ++ (𝐴𝑧))))
315adantr 473 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝐺 ∈ Mnd)
32 wrdco 13913 . . . . . . . 8 ((𝑦 ∈ Word 𝐼𝐴:𝐼𝐵) → (𝐴𝑦) ∈ Word 𝐵)
3324, 27, 32syl2anc 580 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐴𝑦) ∈ Word 𝐵)
34 wrdco 13913 . . . . . . . 8 ((𝑧 ∈ Word 𝐼𝐴:𝐼𝐵) → (𝐴𝑧) ∈ Word 𝐵)
3526, 27, 34syl2anc 580 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐴𝑧) ∈ Word 𝐵)
36 eqid 2797 . . . . . . . 8 (+g𝐺) = (+g𝐺)
3713, 36gsumccat 17690 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝐴𝑦) ∈ Word 𝐵 ∧ (𝐴𝑧) ∈ Word 𝐵) → (𝐺 Σg ((𝐴𝑦) ++ (𝐴𝑧))) = ((𝐺 Σg (𝐴𝑦))(+g𝐺)(𝐺 Σg (𝐴𝑧))))
3831, 33, 35, 37syl3anc 1491 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐺 Σg ((𝐴𝑦) ++ (𝐴𝑧))) = ((𝐺 Σg (𝐴𝑦))(+g𝐺)(𝐺 Σg (𝐴𝑧))))
3930, 38eqtrd 2831 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐺 Σg (𝐴 ∘ (𝑦 ++ 𝑧))) = ((𝐺 Σg (𝐴𝑦))(+g𝐺)(𝐺 Σg (𝐴𝑧))))
40 eqid 2797 . . . . . . . . 9 (+g𝑀) = (+g𝑀)
412, 18, 40frmdadd 17705 . . . . . . . 8 ((𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀)) → (𝑦(+g𝑀)𝑧) = (𝑦 ++ 𝑧))
4241adantl 474 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑦(+g𝑀)𝑧) = (𝑦 ++ 𝑧))
4342fveq2d 6413 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐸‘(𝑦(+g𝑀)𝑧)) = (𝐸‘(𝑦 ++ 𝑧)))
44 ccatcl 13590 . . . . . . . 8 ((𝑦 ∈ Word 𝐼𝑧 ∈ Word 𝐼) → (𝑦 ++ 𝑧) ∈ Word 𝐼)
4524, 26, 44syl2anc 580 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑦 ++ 𝑧) ∈ Word 𝐼)
46 coeq2 5482 . . . . . . . . 9 (𝑥 = (𝑦 ++ 𝑧) → (𝐴𝑥) = (𝐴 ∘ (𝑦 ++ 𝑧)))
4746oveq2d 6892 . . . . . . . 8 (𝑥 = (𝑦 ++ 𝑧) → (𝐺 Σg (𝐴𝑥)) = (𝐺 Σg (𝐴 ∘ (𝑦 ++ 𝑧))))
48 ovex 6908 . . . . . . . 8 (𝐺 Σg (𝐴𝑥)) ∈ V
4947, 16, 48fvmpt3i 6510 . . . . . . 7 ((𝑦 ++ 𝑧) ∈ Word 𝐼 → (𝐸‘(𝑦 ++ 𝑧)) = (𝐺 Σg (𝐴 ∘ (𝑦 ++ 𝑧))))
5045, 49syl 17 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐸‘(𝑦 ++ 𝑧)) = (𝐺 Σg (𝐴 ∘ (𝑦 ++ 𝑧))))
5143, 50eqtrd 2831 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐸‘(𝑦(+g𝑀)𝑧)) = (𝐺 Σg (𝐴 ∘ (𝑦 ++ 𝑧))))
52 coeq2 5482 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
5352oveq2d 6892 . . . . . . . 8 (𝑥 = 𝑦 → (𝐺 Σg (𝐴𝑥)) = (𝐺 Σg (𝐴𝑦)))
5453, 16, 48fvmpt3i 6510 . . . . . . 7 (𝑦 ∈ Word 𝐼 → (𝐸𝑦) = (𝐺 Σg (𝐴𝑦)))
55 coeq2 5482 . . . . . . . . 9 (𝑥 = 𝑧 → (𝐴𝑥) = (𝐴𝑧))
5655oveq2d 6892 . . . . . . . 8 (𝑥 = 𝑧 → (𝐺 Σg (𝐴𝑥)) = (𝐺 Σg (𝐴𝑧)))
5756, 16, 48fvmpt3i 6510 . . . . . . 7 (𝑧 ∈ Word 𝐼 → (𝐸𝑧) = (𝐺 Σg (𝐴𝑧)))
5854, 57oveqan12d 6895 . . . . . 6 ((𝑦 ∈ Word 𝐼𝑧 ∈ Word 𝐼) → ((𝐸𝑦)(+g𝐺)(𝐸𝑧)) = ((𝐺 Σg (𝐴𝑦))(+g𝐺)(𝐺 Σg (𝐴𝑧))))
5924, 26, 58syl2anc 580 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝐸𝑦)(+g𝐺)(𝐸𝑧)) = ((𝐺 Σg (𝐴𝑦))(+g𝐺)(𝐺 Σg (𝐴𝑧))))
6039, 51, 593eqtr4d 2841 . . . 4 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐸‘(𝑦(+g𝑀)𝑧)) = ((𝐸𝑦)(+g𝐺)(𝐸𝑧)))
6160ralrimivva 3150 . . 3 (𝜑 → ∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)(𝐸‘(𝑦(+g𝑀)𝑧)) = ((𝐸𝑦)(+g𝐺)(𝐸𝑧)))
62 wrd0 13555 . . . 4 ∅ ∈ Word 𝐼
63 coeq2 5482 . . . . . . . 8 (𝑥 = ∅ → (𝐴𝑥) = (𝐴 ∘ ∅))
64 co02 5866 . . . . . . . 8 (𝐴 ∘ ∅) = ∅
6563, 64syl6eq 2847 . . . . . . 7 (𝑥 = ∅ → (𝐴𝑥) = ∅)
6665oveq2d 6892 . . . . . 6 (𝑥 = ∅ → (𝐺 Σg (𝐴𝑥)) = (𝐺 Σg ∅))
67 eqid 2797 . . . . . . 7 (0g𝐺) = (0g𝐺)
6867gsum0 17590 . . . . . 6 (𝐺 Σg ∅) = (0g𝐺)
6966, 68syl6eq 2847 . . . . 5 (𝑥 = ∅ → (𝐺 Σg (𝐴𝑥)) = (0g𝐺))
7069, 16, 48fvmpt3i 6510 . . . 4 (∅ ∈ Word 𝐼 → (𝐸‘∅) = (0g𝐺))
7162, 70mp1i 13 . . 3 (𝜑 → (𝐸‘∅) = (0g𝐺))
7222, 61, 713jca 1159 . 2 (𝜑 → (𝐸:(Base‘𝑀)⟶𝐵 ∧ ∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)(𝐸‘(𝑦(+g𝑀)𝑧)) = ((𝐸𝑦)(+g𝐺)(𝐸𝑧)) ∧ (𝐸‘∅) = (0g𝐺)))
732frmd0 17710 . . 3 ∅ = (0g𝑀)
7418, 13, 40, 36, 73, 67ismhm 17649 . 2 (𝐸 ∈ (𝑀 MndHom 𝐺) ↔ ((𝑀 ∈ Mnd ∧ 𝐺 ∈ Mnd) ∧ (𝐸:(Base‘𝑀)⟶𝐵 ∧ ∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)(𝐸‘(𝑦(+g𝑀)𝑧)) = ((𝐸𝑦)(+g𝐺)(𝐸𝑧)) ∧ (𝐸‘∅) = (0g𝐺))))
756, 72, 74sylanbrc 579 1 (𝜑𝐸 ∈ (𝑀 MndHom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  wral 3087  c0 4113  cmpt 4920  ccom 5314  wf 6095  cfv 6099  (class class class)co 6876  Word cword 13530   ++ cconcat 13586  Basecbs 16181  +gcplusg 16264  0gc0g 16412   Σg cgsu 16413  Mndcmnd 17606   MndHom cmhm 17645  freeMndcfrmd 17697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-oadd 7801  df-er 7980  df-map 8095  df-pm 8096  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-card 9049  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-2 11372  df-n0 11577  df-z 11663  df-uz 11927  df-fz 12577  df-fzo 12717  df-seq 13052  df-hash 13367  df-word 13531  df-concat 13587  df-struct 16183  df-ndx 16184  df-slot 16185  df-base 16187  df-sets 16188  df-ress 16189  df-plusg 16277  df-0g 16414  df-gsum 16415  df-mgm 17554  df-sgrp 17596  df-mnd 17607  df-mhm 17647  df-submnd 17648  df-frmd 17699
This theorem is referenced by:  frmdup3  17717
  Copyright terms: Public domain W3C validator