| Step | Hyp | Ref
| Expression |
| 1 | | frmdup.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑋) |
| 2 | | frmdup.m |
. . . 4
⊢ 𝑀 = (freeMnd‘𝐼) |
| 3 | 2 | frmdmnd 18842 |
. . 3
⊢ (𝐼 ∈ 𝑋 → 𝑀 ∈ Mnd) |
| 4 | 1, 3 | syl 17 |
. 2
⊢ (𝜑 → 𝑀 ∈ Mnd) |
| 5 | | frmdup.g |
. 2
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 6 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ Word 𝐼) → 𝐺 ∈ Mnd) |
| 7 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ Word 𝐼) → 𝑥 ∈ Word 𝐼) |
| 8 | | frmdup.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴:𝐼⟶𝐵) |
| 9 | 8 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ Word 𝐼) → 𝐴:𝐼⟶𝐵) |
| 10 | | wrdco 14855 |
. . . . . . 7
⊢ ((𝑥 ∈ Word 𝐼 ∧ 𝐴:𝐼⟶𝐵) → (𝐴 ∘ 𝑥) ∈ Word 𝐵) |
| 11 | 7, 9, 10 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ Word 𝐼) → (𝐴 ∘ 𝑥) ∈ Word 𝐵) |
| 12 | | frmdup.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) |
| 13 | 12 | gsumwcl 18822 |
. . . . . 6
⊢ ((𝐺 ∈ Mnd ∧ (𝐴 ∘ 𝑥) ∈ Word 𝐵) → (𝐺 Σg (𝐴 ∘ 𝑥)) ∈ 𝐵) |
| 14 | 6, 11, 13 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ Word 𝐼) → (𝐺 Σg (𝐴 ∘ 𝑥)) ∈ 𝐵) |
| 15 | | frmdup.e |
. . . . 5
⊢ 𝐸 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) |
| 16 | 14, 15 | fmptd 7109 |
. . . 4
⊢ (𝜑 → 𝐸:Word 𝐼⟶𝐵) |
| 17 | | eqid 2736 |
. . . . . . 7
⊢
(Base‘𝑀) =
(Base‘𝑀) |
| 18 | 2, 17 | frmdbas 18835 |
. . . . . 6
⊢ (𝐼 ∈ 𝑋 → (Base‘𝑀) = Word 𝐼) |
| 19 | 1, 18 | syl 17 |
. . . . 5
⊢ (𝜑 → (Base‘𝑀) = Word 𝐼) |
| 20 | 19 | feq2d 6697 |
. . . 4
⊢ (𝜑 → (𝐸:(Base‘𝑀)⟶𝐵 ↔ 𝐸:Word 𝐼⟶𝐵)) |
| 21 | 16, 20 | mpbird 257 |
. . 3
⊢ (𝜑 → 𝐸:(Base‘𝑀)⟶𝐵) |
| 22 | 2, 17 | frmdelbas 18836 |
. . . . . . . . 9
⊢ (𝑦 ∈ (Base‘𝑀) → 𝑦 ∈ Word 𝐼) |
| 23 | 22 | ad2antrl 728 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑦 ∈ Word 𝐼) |
| 24 | 2, 17 | frmdelbas 18836 |
. . . . . . . . 9
⊢ (𝑧 ∈ (Base‘𝑀) → 𝑧 ∈ Word 𝐼) |
| 25 | 24 | ad2antll 729 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑧 ∈ Word 𝐼) |
| 26 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝐴:𝐼⟶𝐵) |
| 27 | | ccatco 14859 |
. . . . . . . 8
⊢ ((𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ Word 𝐼 ∧ 𝐴:𝐼⟶𝐵) → (𝐴 ∘ (𝑦 ++ 𝑧)) = ((𝐴 ∘ 𝑦) ++ (𝐴 ∘ 𝑧))) |
| 28 | 23, 25, 26, 27 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐴 ∘ (𝑦 ++ 𝑧)) = ((𝐴 ∘ 𝑦) ++ (𝐴 ∘ 𝑧))) |
| 29 | 28 | oveq2d 7426 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐺 Σg (𝐴 ∘ (𝑦 ++ 𝑧))) = (𝐺 Σg ((𝐴 ∘ 𝑦) ++ (𝐴 ∘ 𝑧)))) |
| 30 | 5 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝐺 ∈ Mnd) |
| 31 | | wrdco 14855 |
. . . . . . . 8
⊢ ((𝑦 ∈ Word 𝐼 ∧ 𝐴:𝐼⟶𝐵) → (𝐴 ∘ 𝑦) ∈ Word 𝐵) |
| 32 | 23, 26, 31 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐴 ∘ 𝑦) ∈ Word 𝐵) |
| 33 | | wrdco 14855 |
. . . . . . . 8
⊢ ((𝑧 ∈ Word 𝐼 ∧ 𝐴:𝐼⟶𝐵) → (𝐴 ∘ 𝑧) ∈ Word 𝐵) |
| 34 | 25, 26, 33 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐴 ∘ 𝑧) ∈ Word 𝐵) |
| 35 | | eqid 2736 |
. . . . . . . 8
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 36 | 12, 35 | gsumccat 18824 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ (𝐴 ∘ 𝑦) ∈ Word 𝐵 ∧ (𝐴 ∘ 𝑧) ∈ Word 𝐵) → (𝐺 Σg ((𝐴 ∘ 𝑦) ++ (𝐴 ∘ 𝑧))) = ((𝐺 Σg (𝐴 ∘ 𝑦))(+g‘𝐺)(𝐺 Σg (𝐴 ∘ 𝑧)))) |
| 37 | 30, 32, 34, 36 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐺 Σg ((𝐴 ∘ 𝑦) ++ (𝐴 ∘ 𝑧))) = ((𝐺 Σg (𝐴 ∘ 𝑦))(+g‘𝐺)(𝐺 Σg (𝐴 ∘ 𝑧)))) |
| 38 | 29, 37 | eqtrd 2771 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐺 Σg (𝐴 ∘ (𝑦 ++ 𝑧))) = ((𝐺 Σg (𝐴 ∘ 𝑦))(+g‘𝐺)(𝐺 Σg (𝐴 ∘ 𝑧)))) |
| 39 | | eqid 2736 |
. . . . . . . . 9
⊢
(+g‘𝑀) = (+g‘𝑀) |
| 40 | 2, 17, 39 | frmdadd 18838 |
. . . . . . . 8
⊢ ((𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀)) → (𝑦(+g‘𝑀)𝑧) = (𝑦 ++ 𝑧)) |
| 41 | 40 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑦(+g‘𝑀)𝑧) = (𝑦 ++ 𝑧)) |
| 42 | 41 | fveq2d 6885 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐸‘(𝑦(+g‘𝑀)𝑧)) = (𝐸‘(𝑦 ++ 𝑧))) |
| 43 | | ccatcl 14597 |
. . . . . . . 8
⊢ ((𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ Word 𝐼) → (𝑦 ++ 𝑧) ∈ Word 𝐼) |
| 44 | 23, 25, 43 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑦 ++ 𝑧) ∈ Word 𝐼) |
| 45 | | coeq2 5843 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 ++ 𝑧) → (𝐴 ∘ 𝑥) = (𝐴 ∘ (𝑦 ++ 𝑧))) |
| 46 | 45 | oveq2d 7426 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ++ 𝑧) → (𝐺 Σg (𝐴 ∘ 𝑥)) = (𝐺 Σg (𝐴 ∘ (𝑦 ++ 𝑧)))) |
| 47 | | ovex 7443 |
. . . . . . . 8
⊢ (𝐺 Σg
(𝐴 ∘ 𝑥)) ∈ V |
| 48 | 46, 15, 47 | fvmpt3i 6996 |
. . . . . . 7
⊢ ((𝑦 ++ 𝑧) ∈ Word 𝐼 → (𝐸‘(𝑦 ++ 𝑧)) = (𝐺 Σg (𝐴 ∘ (𝑦 ++ 𝑧)))) |
| 49 | 44, 48 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐸‘(𝑦 ++ 𝑧)) = (𝐺 Σg (𝐴 ∘ (𝑦 ++ 𝑧)))) |
| 50 | 42, 49 | eqtrd 2771 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐸‘(𝑦(+g‘𝑀)𝑧)) = (𝐺 Σg (𝐴 ∘ (𝑦 ++ 𝑧)))) |
| 51 | | coeq2 5843 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝐴 ∘ 𝑥) = (𝐴 ∘ 𝑦)) |
| 52 | 51 | oveq2d 7426 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝐺 Σg (𝐴 ∘ 𝑥)) = (𝐺 Σg (𝐴 ∘ 𝑦))) |
| 53 | 52, 15, 47 | fvmpt3i 6996 |
. . . . . . 7
⊢ (𝑦 ∈ Word 𝐼 → (𝐸‘𝑦) = (𝐺 Σg (𝐴 ∘ 𝑦))) |
| 54 | | coeq2 5843 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝐴 ∘ 𝑥) = (𝐴 ∘ 𝑧)) |
| 55 | 54 | oveq2d 7426 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝐺 Σg (𝐴 ∘ 𝑥)) = (𝐺 Σg (𝐴 ∘ 𝑧))) |
| 56 | 55, 15, 47 | fvmpt3i 6996 |
. . . . . . 7
⊢ (𝑧 ∈ Word 𝐼 → (𝐸‘𝑧) = (𝐺 Σg (𝐴 ∘ 𝑧))) |
| 57 | 53, 56 | oveqan12d 7429 |
. . . . . 6
⊢ ((𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ Word 𝐼) → ((𝐸‘𝑦)(+g‘𝐺)(𝐸‘𝑧)) = ((𝐺 Σg (𝐴 ∘ 𝑦))(+g‘𝐺)(𝐺 Σg (𝐴 ∘ 𝑧)))) |
| 58 | 23, 25, 57 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝐸‘𝑦)(+g‘𝐺)(𝐸‘𝑧)) = ((𝐺 Σg (𝐴 ∘ 𝑦))(+g‘𝐺)(𝐺 Σg (𝐴 ∘ 𝑧)))) |
| 59 | 38, 50, 58 | 3eqtr4d 2781 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐸‘(𝑦(+g‘𝑀)𝑧)) = ((𝐸‘𝑦)(+g‘𝐺)(𝐸‘𝑧))) |
| 60 | 59 | ralrimivva 3188 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)(𝐸‘(𝑦(+g‘𝑀)𝑧)) = ((𝐸‘𝑦)(+g‘𝐺)(𝐸‘𝑧))) |
| 61 | | wrd0 14562 |
. . . 4
⊢ ∅
∈ Word 𝐼 |
| 62 | | coeq2 5843 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (𝐴 ∘ 𝑥) = (𝐴 ∘ ∅)) |
| 63 | | co02 6254 |
. . . . . . . 8
⊢ (𝐴 ∘ ∅) =
∅ |
| 64 | 62, 63 | eqtrdi 2787 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝐴 ∘ 𝑥) = ∅) |
| 65 | 64 | oveq2d 7426 |
. . . . . 6
⊢ (𝑥 = ∅ → (𝐺 Σg
(𝐴 ∘ 𝑥)) = (𝐺 Σg
∅)) |
| 66 | | eqid 2736 |
. . . . . . 7
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 67 | 66 | gsum0 18667 |
. . . . . 6
⊢ (𝐺 Σg
∅) = (0g‘𝐺) |
| 68 | 65, 67 | eqtrdi 2787 |
. . . . 5
⊢ (𝑥 = ∅ → (𝐺 Σg
(𝐴 ∘ 𝑥)) = (0g‘𝐺)) |
| 69 | 68, 15, 47 | fvmpt3i 6996 |
. . . 4
⊢ (∅
∈ Word 𝐼 → (𝐸‘∅) =
(0g‘𝐺)) |
| 70 | 61, 69 | mp1i 13 |
. . 3
⊢ (𝜑 → (𝐸‘∅) = (0g‘𝐺)) |
| 71 | 21, 60, 70 | 3jca 1128 |
. 2
⊢ (𝜑 → (𝐸:(Base‘𝑀)⟶𝐵 ∧ ∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)(𝐸‘(𝑦(+g‘𝑀)𝑧)) = ((𝐸‘𝑦)(+g‘𝐺)(𝐸‘𝑧)) ∧ (𝐸‘∅) = (0g‘𝐺))) |
| 72 | 2 | frmd0 18843 |
. . 3
⊢ ∅ =
(0g‘𝑀) |
| 73 | 17, 12, 39, 35, 72, 66 | ismhm 18768 |
. 2
⊢ (𝐸 ∈ (𝑀 MndHom 𝐺) ↔ ((𝑀 ∈ Mnd ∧ 𝐺 ∈ Mnd) ∧ (𝐸:(Base‘𝑀)⟶𝐵 ∧ ∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)(𝐸‘(𝑦(+g‘𝑀)𝑧)) = ((𝐸‘𝑦)(+g‘𝐺)(𝐸‘𝑧)) ∧ (𝐸‘∅) = (0g‘𝐺)))) |
| 74 | 4, 5, 71, 73 | syl21anbrc 1345 |
1
⊢ (𝜑 → 𝐸 ∈ (𝑀 MndHom 𝐺)) |