MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdup1 Structured version   Visualization version   GIF version

Theorem frmdup1 18503
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
frmdup.m 𝑀 = (freeMnd‘𝐼)
frmdup.b 𝐵 = (Base‘𝐺)
frmdup.e 𝐸 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))
frmdup.g (𝜑𝐺 ∈ Mnd)
frmdup.i (𝜑𝐼𝑋)
frmdup.a (𝜑𝐴:𝐼𝐵)
Assertion
Ref Expression
frmdup1 (𝜑𝐸 ∈ (𝑀 MndHom 𝐺))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐺   𝜑,𝑥   𝑥,𝐼
Allowed substitution hints:   𝐸(𝑥)   𝑀(𝑥)   𝑋(𝑥)

Proof of Theorem frmdup1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frmdup.i . . 3 (𝜑𝐼𝑋)
2 frmdup.m . . . 4 𝑀 = (freeMnd‘𝐼)
32frmdmnd 18498 . . 3 (𝐼𝑋𝑀 ∈ Mnd)
41, 3syl 17 . 2 (𝜑𝑀 ∈ Mnd)
5 frmdup.g . 2 (𝜑𝐺 ∈ Mnd)
65adantr 481 . . . . . 6 ((𝜑𝑥 ∈ Word 𝐼) → 𝐺 ∈ Mnd)
7 simpr 485 . . . . . . 7 ((𝜑𝑥 ∈ Word 𝐼) → 𝑥 ∈ Word 𝐼)
8 frmdup.a . . . . . . . 8 (𝜑𝐴:𝐼𝐵)
98adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ Word 𝐼) → 𝐴:𝐼𝐵)
10 wrdco 14544 . . . . . . 7 ((𝑥 ∈ Word 𝐼𝐴:𝐼𝐵) → (𝐴𝑥) ∈ Word 𝐵)
117, 9, 10syl2anc 584 . . . . . 6 ((𝜑𝑥 ∈ Word 𝐼) → (𝐴𝑥) ∈ Word 𝐵)
12 frmdup.b . . . . . . 7 𝐵 = (Base‘𝐺)
1312gsumwcl 18477 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝐴𝑥) ∈ Word 𝐵) → (𝐺 Σg (𝐴𝑥)) ∈ 𝐵)
146, 11, 13syl2anc 584 . . . . 5 ((𝜑𝑥 ∈ Word 𝐼) → (𝐺 Σg (𝐴𝑥)) ∈ 𝐵)
15 frmdup.e . . . . 5 𝐸 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))
1614, 15fmptd 6988 . . . 4 (𝜑𝐸:Word 𝐼𝐵)
17 eqid 2738 . . . . . . 7 (Base‘𝑀) = (Base‘𝑀)
182, 17frmdbas 18491 . . . . . 6 (𝐼𝑋 → (Base‘𝑀) = Word 𝐼)
191, 18syl 17 . . . . 5 (𝜑 → (Base‘𝑀) = Word 𝐼)
2019feq2d 6586 . . . 4 (𝜑 → (𝐸:(Base‘𝑀)⟶𝐵𝐸:Word 𝐼𝐵))
2116, 20mpbird 256 . . 3 (𝜑𝐸:(Base‘𝑀)⟶𝐵)
222, 17frmdelbas 18492 . . . . . . . . 9 (𝑦 ∈ (Base‘𝑀) → 𝑦 ∈ Word 𝐼)
2322ad2antrl 725 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑦 ∈ Word 𝐼)
242, 17frmdelbas 18492 . . . . . . . . 9 (𝑧 ∈ (Base‘𝑀) → 𝑧 ∈ Word 𝐼)
2524ad2antll 726 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑧 ∈ Word 𝐼)
268adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝐴:𝐼𝐵)
27 ccatco 14548 . . . . . . . 8 ((𝑦 ∈ Word 𝐼𝑧 ∈ Word 𝐼𝐴:𝐼𝐵) → (𝐴 ∘ (𝑦 ++ 𝑧)) = ((𝐴𝑦) ++ (𝐴𝑧)))
2823, 25, 26, 27syl3anc 1370 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐴 ∘ (𝑦 ++ 𝑧)) = ((𝐴𝑦) ++ (𝐴𝑧)))
2928oveq2d 7291 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐺 Σg (𝐴 ∘ (𝑦 ++ 𝑧))) = (𝐺 Σg ((𝐴𝑦) ++ (𝐴𝑧))))
305adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝐺 ∈ Mnd)
31 wrdco 14544 . . . . . . . 8 ((𝑦 ∈ Word 𝐼𝐴:𝐼𝐵) → (𝐴𝑦) ∈ Word 𝐵)
3223, 26, 31syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐴𝑦) ∈ Word 𝐵)
33 wrdco 14544 . . . . . . . 8 ((𝑧 ∈ Word 𝐼𝐴:𝐼𝐵) → (𝐴𝑧) ∈ Word 𝐵)
3425, 26, 33syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐴𝑧) ∈ Word 𝐵)
35 eqid 2738 . . . . . . . 8 (+g𝐺) = (+g𝐺)
3612, 35gsumccat 18480 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝐴𝑦) ∈ Word 𝐵 ∧ (𝐴𝑧) ∈ Word 𝐵) → (𝐺 Σg ((𝐴𝑦) ++ (𝐴𝑧))) = ((𝐺 Σg (𝐴𝑦))(+g𝐺)(𝐺 Σg (𝐴𝑧))))
3730, 32, 34, 36syl3anc 1370 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐺 Σg ((𝐴𝑦) ++ (𝐴𝑧))) = ((𝐺 Σg (𝐴𝑦))(+g𝐺)(𝐺 Σg (𝐴𝑧))))
3829, 37eqtrd 2778 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐺 Σg (𝐴 ∘ (𝑦 ++ 𝑧))) = ((𝐺 Σg (𝐴𝑦))(+g𝐺)(𝐺 Σg (𝐴𝑧))))
39 eqid 2738 . . . . . . . . 9 (+g𝑀) = (+g𝑀)
402, 17, 39frmdadd 18494 . . . . . . . 8 ((𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀)) → (𝑦(+g𝑀)𝑧) = (𝑦 ++ 𝑧))
4140adantl 482 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑦(+g𝑀)𝑧) = (𝑦 ++ 𝑧))
4241fveq2d 6778 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐸‘(𝑦(+g𝑀)𝑧)) = (𝐸‘(𝑦 ++ 𝑧)))
43 ccatcl 14277 . . . . . . . 8 ((𝑦 ∈ Word 𝐼𝑧 ∈ Word 𝐼) → (𝑦 ++ 𝑧) ∈ Word 𝐼)
4423, 25, 43syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑦 ++ 𝑧) ∈ Word 𝐼)
45 coeq2 5767 . . . . . . . . 9 (𝑥 = (𝑦 ++ 𝑧) → (𝐴𝑥) = (𝐴 ∘ (𝑦 ++ 𝑧)))
4645oveq2d 7291 . . . . . . . 8 (𝑥 = (𝑦 ++ 𝑧) → (𝐺 Σg (𝐴𝑥)) = (𝐺 Σg (𝐴 ∘ (𝑦 ++ 𝑧))))
47 ovex 7308 . . . . . . . 8 (𝐺 Σg (𝐴𝑥)) ∈ V
4846, 15, 47fvmpt3i 6880 . . . . . . 7 ((𝑦 ++ 𝑧) ∈ Word 𝐼 → (𝐸‘(𝑦 ++ 𝑧)) = (𝐺 Σg (𝐴 ∘ (𝑦 ++ 𝑧))))
4944, 48syl 17 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐸‘(𝑦 ++ 𝑧)) = (𝐺 Σg (𝐴 ∘ (𝑦 ++ 𝑧))))
5042, 49eqtrd 2778 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐸‘(𝑦(+g𝑀)𝑧)) = (𝐺 Σg (𝐴 ∘ (𝑦 ++ 𝑧))))
51 coeq2 5767 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
5251oveq2d 7291 . . . . . . . 8 (𝑥 = 𝑦 → (𝐺 Σg (𝐴𝑥)) = (𝐺 Σg (𝐴𝑦)))
5352, 15, 47fvmpt3i 6880 . . . . . . 7 (𝑦 ∈ Word 𝐼 → (𝐸𝑦) = (𝐺 Σg (𝐴𝑦)))
54 coeq2 5767 . . . . . . . . 9 (𝑥 = 𝑧 → (𝐴𝑥) = (𝐴𝑧))
5554oveq2d 7291 . . . . . . . 8 (𝑥 = 𝑧 → (𝐺 Σg (𝐴𝑥)) = (𝐺 Σg (𝐴𝑧)))
5655, 15, 47fvmpt3i 6880 . . . . . . 7 (𝑧 ∈ Word 𝐼 → (𝐸𝑧) = (𝐺 Σg (𝐴𝑧)))
5753, 56oveqan12d 7294 . . . . . 6 ((𝑦 ∈ Word 𝐼𝑧 ∈ Word 𝐼) → ((𝐸𝑦)(+g𝐺)(𝐸𝑧)) = ((𝐺 Σg (𝐴𝑦))(+g𝐺)(𝐺 Σg (𝐴𝑧))))
5823, 25, 57syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝐸𝑦)(+g𝐺)(𝐸𝑧)) = ((𝐺 Σg (𝐴𝑦))(+g𝐺)(𝐺 Σg (𝐴𝑧))))
5938, 50, 583eqtr4d 2788 . . . 4 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐸‘(𝑦(+g𝑀)𝑧)) = ((𝐸𝑦)(+g𝐺)(𝐸𝑧)))
6059ralrimivva 3123 . . 3 (𝜑 → ∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)(𝐸‘(𝑦(+g𝑀)𝑧)) = ((𝐸𝑦)(+g𝐺)(𝐸𝑧)))
61 wrd0 14242 . . . 4 ∅ ∈ Word 𝐼
62 coeq2 5767 . . . . . . . 8 (𝑥 = ∅ → (𝐴𝑥) = (𝐴 ∘ ∅))
63 co02 6164 . . . . . . . 8 (𝐴 ∘ ∅) = ∅
6462, 63eqtrdi 2794 . . . . . . 7 (𝑥 = ∅ → (𝐴𝑥) = ∅)
6564oveq2d 7291 . . . . . 6 (𝑥 = ∅ → (𝐺 Σg (𝐴𝑥)) = (𝐺 Σg ∅))
66 eqid 2738 . . . . . . 7 (0g𝐺) = (0g𝐺)
6766gsum0 18368 . . . . . 6 (𝐺 Σg ∅) = (0g𝐺)
6865, 67eqtrdi 2794 . . . . 5 (𝑥 = ∅ → (𝐺 Σg (𝐴𝑥)) = (0g𝐺))
6968, 15, 47fvmpt3i 6880 . . . 4 (∅ ∈ Word 𝐼 → (𝐸‘∅) = (0g𝐺))
7061, 69mp1i 13 . . 3 (𝜑 → (𝐸‘∅) = (0g𝐺))
7121, 60, 703jca 1127 . 2 (𝜑 → (𝐸:(Base‘𝑀)⟶𝐵 ∧ ∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)(𝐸‘(𝑦(+g𝑀)𝑧)) = ((𝐸𝑦)(+g𝐺)(𝐸𝑧)) ∧ (𝐸‘∅) = (0g𝐺)))
722frmd0 18499 . . 3 ∅ = (0g𝑀)
7317, 12, 39, 35, 72, 66ismhm 18432 . 2 (𝐸 ∈ (𝑀 MndHom 𝐺) ↔ ((𝑀 ∈ Mnd ∧ 𝐺 ∈ Mnd) ∧ (𝐸:(Base‘𝑀)⟶𝐵 ∧ ∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)(𝐸‘(𝑦(+g𝑀)𝑧)) = ((𝐸𝑦)(+g𝐺)(𝐸𝑧)) ∧ (𝐸‘∅) = (0g𝐺))))
744, 5, 71, 73syl21anbrc 1343 1 (𝜑𝐸 ∈ (𝑀 MndHom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  c0 4256  cmpt 5157  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  Word cword 14217   ++ cconcat 14273  Basecbs 16912  +gcplusg 16962  0gc0g 17150   Σg cgsu 17151  Mndcmnd 18385   MndHom cmhm 18428  freeMndcfrmd 18486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-word 14218  df-concat 14274  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-gsum 17153  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-frmd 18488
This theorem is referenced by:  frmdup3  18506
  Copyright terms: Public domain W3C validator