Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constmap Structured version   Visualization version   GIF version

Theorem constmap 40451
Description: A constant (represented without dummy variables) is an element of a function set.

Note: In the following development, we will be quite often quantifying over functions and points in N-dimensional space (which are equivalent to functions from an "index set"). Many of the following theorems exist to transfer standard facts about functions to elements of function sets. (Contributed by Stefan O'Rear, 30-Aug-2014.) (Revised by Stefan O'Rear, 5-May-2015.)

Hypotheses
Ref Expression
constmap.1 𝐴 ∈ V
constmap.3 𝐶 ∈ V
Assertion
Ref Expression
constmap (𝐵𝐶 → (𝐴 × {𝐵}) ∈ (𝐶m 𝐴))

Proof of Theorem constmap
StepHypRef Expression
1 fconst6g 6647 . 2 (𝐵𝐶 → (𝐴 × {𝐵}):𝐴𝐶)
2 constmap.3 . . 3 𝐶 ∈ V
3 constmap.1 . . 3 𝐴 ∈ V
42, 3elmap 8617 . 2 ((𝐴 × {𝐵}) ∈ (𝐶m 𝐴) ↔ (𝐴 × {𝐵}):𝐴𝐶)
51, 4sylibr 233 1 (𝐵𝐶 → (𝐴 × {𝐵}) ∈ (𝐶m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3422  {csn 4558   × cxp 5578  wf 6414  (class class class)co 7255  m cmap 8573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575
This theorem is referenced by:  mzpclall  40465  mzpindd  40484
  Copyright terms: Public domain W3C validator