![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > constmap | Structured version Visualization version GIF version |
Description: A constant (represented
without dummy variables) is an element of a
function set.
Note: In the following development, we will be quite often quantifying over functions and points in N-dimensional space (which are equivalent to functions from an "index set"). Many of the following theorems exist to transfer standard facts about functions to elements of function sets. (Contributed by Stefan O'Rear, 30-Aug-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
Ref | Expression |
---|---|
constmap.1 | ⊢ 𝐴 ∈ V |
constmap.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
constmap | ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}) ∈ (𝐶 ↑m 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst6g 6735 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) | |
2 | constmap.3 | . . 3 ⊢ 𝐶 ∈ V | |
3 | constmap.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | 2, 3 | elmap 8815 | . 2 ⊢ ((𝐴 × {𝐵}) ∈ (𝐶 ↑m 𝐴) ↔ (𝐴 × {𝐵}):𝐴⟶𝐶) |
5 | 1, 4 | sylibr 233 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}) ∈ (𝐶 ↑m 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3447 {csn 4590 × cxp 5635 ⟶wf 6496 (class class class)co 7361 ↑m cmap 8771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-sbc 3744 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-fv 6508 df-ov 7364 df-oprab 7365 df-mpo 7366 df-map 8773 |
This theorem is referenced by: mzpclall 41097 mzpindd 41116 |
Copyright terms: Public domain | W3C validator |