Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constmap Structured version   Visualization version   GIF version

Theorem constmap 41441
Description: A constant (represented without dummy variables) is an element of a function set.

Note: In the following development, we will be quite often quantifying over functions and points in N-dimensional space (which are equivalent to functions from an "index set"). Many of the following theorems exist to transfer standard facts about functions to elements of function sets. (Contributed by Stefan O'Rear, 30-Aug-2014.) (Revised by Stefan O'Rear, 5-May-2015.)

Hypotheses
Ref Expression
constmap.1 𝐴 ∈ V
constmap.3 𝐶 ∈ V
Assertion
Ref Expression
constmap (𝐵𝐶 → (𝐴 × {𝐵}) ∈ (𝐶m 𝐴))

Proof of Theorem constmap
StepHypRef Expression
1 fconst6g 6780 . 2 (𝐵𝐶 → (𝐴 × {𝐵}):𝐴𝐶)
2 constmap.3 . . 3 𝐶 ∈ V
3 constmap.1 . . 3 𝐴 ∈ V
42, 3elmap 8864 . 2 ((𝐴 × {𝐵}) ∈ (𝐶m 𝐴) ↔ (𝐴 × {𝐵}):𝐴𝐶)
51, 4sylibr 233 1 (𝐵𝐶 → (𝐴 × {𝐵}) ∈ (𝐶m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3474  {csn 4628   × cxp 5674  wf 6539  (class class class)co 7408  m cmap 8819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-map 8821
This theorem is referenced by:  mzpclall  41455  mzpindd  41474
  Copyright terms: Public domain W3C validator