Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constmap Structured version   Visualization version   GIF version

Theorem constmap 42708
Description: A constant (represented without dummy variables) is an element of a function set.

Note: In the following development, we will be quite often quantifying over functions and points in N-dimensional space (which are equivalent to functions from an "index set"). Many of the following theorems exist to transfer standard facts about functions to elements of function sets. (Contributed by Stefan O'Rear, 30-Aug-2014.) (Revised by Stefan O'Rear, 5-May-2015.)

Hypotheses
Ref Expression
constmap.1 𝐴 ∈ V
constmap.3 𝐶 ∈ V
Assertion
Ref Expression
constmap (𝐵𝐶 → (𝐴 × {𝐵}) ∈ (𝐶m 𝐴))

Proof of Theorem constmap
StepHypRef Expression
1 fconst6g 6752 . 2 (𝐵𝐶 → (𝐴 × {𝐵}):𝐴𝐶)
2 constmap.3 . . 3 𝐶 ∈ V
3 constmap.1 . . 3 𝐴 ∈ V
42, 3elmap 8847 . 2 ((𝐴 × {𝐵}) ∈ (𝐶m 𝐴) ↔ (𝐴 × {𝐵}):𝐴𝐶)
51, 4sylibr 234 1 (𝐵𝐶 → (𝐴 × {𝐵}) ∈ (𝐶m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3450  {csn 4592   × cxp 5639  wf 6510  (class class class)co 7390  m cmap 8802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804
This theorem is referenced by:  mzpclall  42722  mzpindd  42741
  Copyright terms: Public domain W3C validator