| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fconst6g | Structured version Visualization version GIF version | ||
| Description: Constant function with loose range. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| fconst6g | ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 6717 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 2 | snssi 4761 | . 2 ⊢ (𝐵 ∈ 𝐶 → {𝐵} ⊆ 𝐶) | |
| 3 | 1, 2 | fssd 6675 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 {csn 4577 × cxp 5619 ⟶wf 6484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-fun 6490 df-fn 6491 df-f 6492 |
| This theorem is referenced by: fconst6 6720 map0g 8816 fdiagfn 8822 mapsncnv 8825 brwdom2 9468 cantnf0 9574 fseqdom 9926 pwsdiagel 17405 setcmon 17998 setcepi 17999 pwsmnd 18684 pws0g 18685 0mhm 18731 pwspjmhm 18742 pwsgrp 18969 pwsinvg 18970 symgpssefmnd 19312 pwscmn 19779 pwsabl 19780 pwsring 20246 pws1 20247 pwscrng 20248 pwslmod 20907 frlmlmod 21690 frlmlss 21692 psrvscacl 21892 psr0cl 21893 psrlmod 21900 mplsubglem 21939 coe1fval3 22124 coe1z 22180 coe1mul2 22186 coe1tm 22190 evls1sca 22241 rhmply1vsca 22306 mamuvs1 22323 mamuvs2 22324 lmconst 23179 cnconst2 23201 pwstps 23548 xkopt 23573 xkopjcn 23574 tmdgsum 24013 tmdgsum2 24014 symgtgp 24024 cstucnd 24201 imasdsf1olem 24291 pwsxms 24450 pwsms 24451 mbfconstlem 25558 mbfmulc2lem 25578 i1fmulc 25634 itg2mulc 25678 dvconst 25848 dvcmul 25877 plypf1 26147 amgmlem 26930 dchrelbas2 27178 resf1o 32719 elrspunidl 33402 ofcccat 34579 lpadlem1 34713 poimirlem28 37711 lflvscl 39199 lflvsdi1 39200 lflvsdi2 39201 lflvsass 39203 evlsvvval 42684 fsuppssind 42714 mhphf 42718 constmap 42833 mendlmod 43309 cantnfresb 43444 ofoafo 43476 naddcnffo 43484 naddcnfid1 43487 naddcnfid2 43488 onnog 43549 dvsconst 44450 expgrowth 44455 mapssbi 45337 dvsinax 46038 amgmlemALT 49931 |
| Copyright terms: Public domain | W3C validator |