![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fconst6g | Structured version Visualization version GIF version |
Description: Constant function with loose range. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
fconst6g | ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstg 6808 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
2 | snssi 4833 | . 2 ⊢ (𝐵 ∈ 𝐶 → {𝐵} ⊆ 𝐶) | |
3 | 1, 2 | fssd 6764 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 {csn 4648 × cxp 5698 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: fconst6 6811 map0g 8942 fdiagfn 8948 mapsncnv 8951 brwdom2 9642 cantnf0 9744 fseqdom 10095 pwsdiagel 17557 setcmon 18154 setcepi 18155 pwsmnd 18807 pws0g 18808 0mhm 18854 pwspjmhm 18865 pwsgrp 19092 pwsinvg 19093 symgpssefmnd 19437 pwscmn 19905 pwsabl 19906 pwsring 20347 pws1 20348 pwscrng 20349 pwslmod 20991 frlmlmod 21792 frlmlss 21794 psrvscacl 21994 psr0cl 21995 psrlmod 22003 mplsubglem 22042 coe1fval3 22231 coe1z 22287 coe1mul2 22293 coe1tm 22297 evls1sca 22348 rhmply1vsca 22413 mamuvs1 22430 mamuvs2 22431 lmconst 23290 cnconst2 23312 pwstps 23659 xkopt 23684 xkopjcn 23685 tmdgsum 24124 tmdgsum2 24125 symgtgp 24135 cstucnd 24314 imasdsf1olem 24404 pwsxms 24566 pwsms 24567 mbfconstlem 25681 mbfmulc2lem 25701 i1fmulc 25758 itg2mulc 25802 dvconst 25972 dvcmul 26001 plypf1 26271 amgmlem 27051 dchrelbas2 27299 resf1o 32744 elrspunidl 33421 ofcccat 34520 lpadlem1 34654 poimirlem28 37608 lflvscl 39033 lflvsdi1 39034 lflvsdi2 39035 lflvsass 39037 evlsvvval 42518 fsuppssind 42548 mhphf 42552 constmap 42669 mendlmod 43150 cantnfresb 43286 ofoafo 43318 naddcnffo 43326 naddcnfid1 43329 naddcnfid2 43330 onnog 43391 dvsconst 44299 expgrowth 44304 mapssbi 45120 dvsinax 45834 amgmlemALT 48897 |
Copyright terms: Public domain | W3C validator |