| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fconst6g | Structured version Visualization version GIF version | ||
| Description: Constant function with loose range. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| fconst6g | ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 6795 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 2 | snssi 4808 | . 2 ⊢ (𝐵 ∈ 𝐶 → {𝐵} ⊆ 𝐶) | |
| 3 | 1, 2 | fssd 6753 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 {csn 4626 × cxp 5683 ⟶wf 6557 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-fun 6563 df-fn 6564 df-f 6565 |
| This theorem is referenced by: fconst6 6798 map0g 8924 fdiagfn 8930 mapsncnv 8933 brwdom2 9613 cantnf0 9715 fseqdom 10066 pwsdiagel 17542 setcmon 18132 setcepi 18133 pwsmnd 18785 pws0g 18786 0mhm 18832 pwspjmhm 18843 pwsgrp 19070 pwsinvg 19071 symgpssefmnd 19413 pwscmn 19881 pwsabl 19882 pwsring 20321 pws1 20322 pwscrng 20323 pwslmod 20968 frlmlmod 21769 frlmlss 21771 psrvscacl 21971 psr0cl 21972 psrlmod 21980 mplsubglem 22019 coe1fval3 22210 coe1z 22266 coe1mul2 22272 coe1tm 22276 evls1sca 22327 rhmply1vsca 22392 mamuvs1 22409 mamuvs2 22410 lmconst 23269 cnconst2 23291 pwstps 23638 xkopt 23663 xkopjcn 23664 tmdgsum 24103 tmdgsum2 24104 symgtgp 24114 cstucnd 24293 imasdsf1olem 24383 pwsxms 24545 pwsms 24546 mbfconstlem 25662 mbfmulc2lem 25682 i1fmulc 25738 itg2mulc 25782 dvconst 25952 dvcmul 25981 plypf1 26251 amgmlem 27033 dchrelbas2 27281 resf1o 32741 elrspunidl 33456 ofcccat 34558 lpadlem1 34692 poimirlem28 37655 lflvscl 39078 lflvsdi1 39079 lflvsdi2 39080 lflvsass 39082 evlsvvval 42573 fsuppssind 42603 mhphf 42607 constmap 42724 mendlmod 43201 cantnfresb 43337 ofoafo 43369 naddcnffo 43377 naddcnfid1 43380 naddcnfid2 43381 onnog 43442 dvsconst 44349 expgrowth 44354 mapssbi 45218 dvsinax 45928 amgmlemALT 49322 |
| Copyright terms: Public domain | W3C validator |