Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fconst6g | Structured version Visualization version GIF version |
Description: Constant function with loose range. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
fconst6g | ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstg 6670 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
2 | snssi 4742 | . 2 ⊢ (𝐵 ∈ 𝐶 → {𝐵} ⊆ 𝐶) | |
3 | 1, 2 | fssd 6627 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 {csn 4562 × cxp 5588 ⟶wf 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-fun 6439 df-fn 6440 df-f 6441 |
This theorem is referenced by: fconst6 6673 map0g 8681 fdiagfn 8687 mapsncnv 8690 brwdom2 9341 cantnf0 9442 fseqdom 9791 pwsdiagel 17217 setcmon 17811 setcepi 17812 pwsmnd 18429 pws0g 18430 0mhm 18467 pwspjmhm 18477 pwsgrp 18696 pwsinvg 18697 symgpssefmnd 19012 pwscmn 19473 pwsabl 19474 pwsring 19863 pws1 19864 pwscrng 19865 pwslmod 20241 frlmlmod 20965 frlmlss 20967 psrvscacl 21171 psr0cl 21172 psrlmod 21179 mplsubglem 21214 coe1fval3 21388 coe1z 21443 coe1mul2 21449 coe1tm 21453 evls1sca 21498 mamuvs1 21561 mamuvs2 21562 lmconst 22421 cnconst2 22443 pwstps 22790 xkopt 22815 xkopjcn 22816 tmdgsum 23255 tmdgsum2 23256 symgtgp 23266 cstucnd 23445 imasdsf1olem 23535 pwsxms 23697 pwsms 23698 mbfconstlem 24800 mbfmulc2lem 24820 i1fmulc 24877 itg2mulc 24921 dvconst 25090 dvcmul 25117 plypf1 25382 amgmlem 26148 dchrelbas2 26394 resf1o 31074 elrspunidl 31615 ofcccat 32531 lpadlem1 32666 poimirlem28 35814 lflvscl 37098 lflvsdi1 37099 lflvsdi2 37100 lflvsass 37102 evlsbagval 40282 fsuppssind 40289 mhphf 40292 constmap 40542 mendlmod 41025 dvsconst 41955 expgrowth 41960 mapssbi 42760 dvsinax 43461 amgmlemALT 46518 |
Copyright terms: Public domain | W3C validator |