![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fconst6g | Structured version Visualization version GIF version |
Description: Constant function with loose range. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
fconst6g | ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstg 6307 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
2 | snssi 4527 | . 2 ⊢ (𝐵 ∈ 𝐶 → {𝐵} ⊆ 𝐶) | |
3 | 1, 2 | fssd 6270 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 {csn 4368 × cxp 5310 ⟶wf 6097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-fun 6103 df-fn 6104 df-f 6105 |
This theorem is referenced by: fconst6 6310 map0g 8136 fdiagfn 8141 mapsncnv 8144 brwdom2 8720 cantnf0 8822 fseqdom 9135 pwsdiagel 16472 setcmon 17051 setcepi 17052 pwsmnd 17640 pws0g 17641 0mhm 17673 pwspjmhm 17683 pwsgrp 17843 pwsinvg 17844 pwscmn 18581 pwsabl 18582 pwsring 18931 pws1 18932 pwscrng 18933 pwslmod 19291 psrvscacl 19716 psr0cl 19717 psrlmod 19724 mplsubglem 19757 coe1fval3 19900 coe1z 19955 coe1mul2 19961 coe1tm 19965 evls1sca 20010 frlmlmod 20418 frlmlss 20420 mamuvs1 20536 mamuvs2 20537 lmconst 21394 cnconst2 21416 pwstps 21762 xkopt 21787 xkopjcn 21788 tmdgsum 22227 tmdgsum2 22228 symgtgp 22233 cstucnd 22416 imasdsf1olem 22506 pwsxms 22665 pwsms 22666 mbfconstlem 23735 mbfmulc2lem 23755 i1fmulc 23811 itg2mulc 23855 dvconst 24021 dvcmul 24048 plypf1 24309 amgmlem 25068 dchrelbas2 25314 resf1o 30023 ofcccat 31138 poimirlem28 33926 lflvscl 35098 lflvsdi1 35099 lflvsdi2 35100 lflvsass 35102 constmap 38062 mendlmod 38548 dvsconst 39311 expgrowth 39316 mapssbi 40157 dvsinax 40871 amgmlemALT 43351 |
Copyright terms: Public domain | W3C validator |