| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fconst6g | Structured version Visualization version GIF version | ||
| Description: Constant function with loose range. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| fconst6g | ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 6765 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 2 | snssi 4784 | . 2 ⊢ (𝐵 ∈ 𝐶 → {𝐵} ⊆ 𝐶) | |
| 3 | 1, 2 | fssd 6723 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 {csn 4601 × cxp 5652 ⟶wf 6527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-fun 6533 df-fn 6534 df-f 6535 |
| This theorem is referenced by: fconst6 6768 map0g 8898 fdiagfn 8904 mapsncnv 8907 brwdom2 9587 cantnf0 9689 fseqdom 10040 pwsdiagel 17511 setcmon 18100 setcepi 18101 pwsmnd 18750 pws0g 18751 0mhm 18797 pwspjmhm 18808 pwsgrp 19035 pwsinvg 19036 symgpssefmnd 19377 pwscmn 19844 pwsabl 19845 pwsring 20284 pws1 20285 pwscrng 20286 pwslmod 20927 frlmlmod 21709 frlmlss 21711 psrvscacl 21911 psr0cl 21912 psrlmod 21920 mplsubglem 21959 coe1fval3 22144 coe1z 22200 coe1mul2 22206 coe1tm 22210 evls1sca 22261 rhmply1vsca 22326 mamuvs1 22343 mamuvs2 22344 lmconst 23199 cnconst2 23221 pwstps 23568 xkopt 23593 xkopjcn 23594 tmdgsum 24033 tmdgsum2 24034 symgtgp 24044 cstucnd 24222 imasdsf1olem 24312 pwsxms 24471 pwsms 24472 mbfconstlem 25580 mbfmulc2lem 25600 i1fmulc 25656 itg2mulc 25700 dvconst 25870 dvcmul 25899 plypf1 26169 amgmlem 26952 dchrelbas2 27200 resf1o 32707 elrspunidl 33443 ofcccat 34575 lpadlem1 34709 poimirlem28 37672 lflvscl 39095 lflvsdi1 39096 lflvsdi2 39097 lflvsass 39099 evlsvvval 42586 fsuppssind 42616 mhphf 42620 constmap 42736 mendlmod 43213 cantnfresb 43348 ofoafo 43380 naddcnffo 43388 naddcnfid1 43391 naddcnfid2 43392 onnog 43453 dvsconst 44354 expgrowth 44359 mapssbi 45237 dvsinax 45942 amgmlemALT 49667 |
| Copyright terms: Public domain | W3C validator |