Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fconst6g | Structured version Visualization version GIF version |
Description: Constant function with loose range. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
fconst6g | ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstg 6645 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
2 | snssi 4738 | . 2 ⊢ (𝐵 ∈ 𝐶 → {𝐵} ⊆ 𝐶) | |
3 | 1, 2 | fssd 6602 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 {csn 4558 × cxp 5578 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 df-f 6422 |
This theorem is referenced by: fconst6 6648 map0g 8630 fdiagfn 8636 mapsncnv 8639 brwdom2 9262 cantnf0 9363 fseqdom 9713 pwsdiagel 17125 setcmon 17718 setcepi 17719 pwsmnd 18335 pws0g 18336 0mhm 18373 pwspjmhm 18383 pwsgrp 18602 pwsinvg 18603 symgpssefmnd 18918 pwscmn 19379 pwsabl 19380 pwsring 19769 pws1 19770 pwscrng 19771 pwslmod 20147 frlmlmod 20866 frlmlss 20868 psrvscacl 21072 psr0cl 21073 psrlmod 21080 mplsubglem 21115 coe1fval3 21289 coe1z 21344 coe1mul2 21350 coe1tm 21354 evls1sca 21399 mamuvs1 21462 mamuvs2 21463 lmconst 22320 cnconst2 22342 pwstps 22689 xkopt 22714 xkopjcn 22715 tmdgsum 23154 tmdgsum2 23155 symgtgp 23165 cstucnd 23344 imasdsf1olem 23434 pwsxms 23594 pwsms 23595 mbfconstlem 24696 mbfmulc2lem 24716 i1fmulc 24773 itg2mulc 24817 dvconst 24986 dvcmul 25013 plypf1 25278 amgmlem 26044 dchrelbas2 26290 resf1o 30967 elrspunidl 31508 ofcccat 32422 lpadlem1 32557 poimirlem28 35732 lflvscl 37018 lflvsdi1 37019 lflvsdi2 37020 lflvsass 37022 evlsbagval 40198 fsuppssind 40205 mhphf 40208 constmap 40451 mendlmod 40934 dvsconst 41837 expgrowth 41842 mapssbi 42642 dvsinax 43344 amgmlemALT 46393 |
Copyright terms: Public domain | W3C validator |