| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fconst6g | Structured version Visualization version GIF version | ||
| Description: Constant function with loose range. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| fconst6g | ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 6710 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 2 | snssi 4760 | . 2 ⊢ (𝐵 ∈ 𝐶 → {𝐵} ⊆ 𝐶) | |
| 3 | 1, 2 | fssd 6668 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 {csn 4576 × cxp 5614 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-fun 6483 df-fn 6484 df-f 6485 |
| This theorem is referenced by: fconst6 6713 map0g 8808 fdiagfn 8814 mapsncnv 8817 brwdom2 9459 cantnf0 9565 fseqdom 9917 pwsdiagel 17401 setcmon 17994 setcepi 17995 pwsmnd 18680 pws0g 18681 0mhm 18727 pwspjmhm 18738 pwsgrp 18965 pwsinvg 18966 symgpssefmnd 19309 pwscmn 19776 pwsabl 19777 pwsring 20243 pws1 20244 pwscrng 20245 pwslmod 20904 frlmlmod 21687 frlmlss 21689 psrvscacl 21889 psr0cl 21890 psrlmod 21898 mplsubglem 21937 coe1fval3 22122 coe1z 22178 coe1mul2 22184 coe1tm 22188 evls1sca 22239 rhmply1vsca 22304 mamuvs1 22321 mamuvs2 22322 lmconst 23177 cnconst2 23199 pwstps 23546 xkopt 23571 xkopjcn 23572 tmdgsum 24011 tmdgsum2 24012 symgtgp 24022 cstucnd 24199 imasdsf1olem 24289 pwsxms 24448 pwsms 24449 mbfconstlem 25556 mbfmulc2lem 25576 i1fmulc 25632 itg2mulc 25676 dvconst 25846 dvcmul 25875 plypf1 26145 amgmlem 26928 dchrelbas2 27176 resf1o 32711 elrspunidl 33391 ofcccat 34554 lpadlem1 34688 poimirlem28 37694 lflvscl 39122 lflvsdi1 39123 lflvsdi2 39124 lflvsass 39126 evlsvvval 42602 fsuppssind 42632 mhphf 42636 constmap 42752 mendlmod 43228 cantnfresb 43363 ofoafo 43395 naddcnffo 43403 naddcnfid1 43406 naddcnfid2 43407 onnog 43468 dvsconst 44369 expgrowth 44374 mapssbi 45256 dvsinax 45957 amgmlemALT 49841 |
| Copyright terms: Public domain | W3C validator |