![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fconst6g | Structured version Visualization version GIF version |
Description: Constant function with loose range. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
fconst6g | ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstg 6779 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
2 | snssi 4808 | . 2 ⊢ (𝐵 ∈ 𝐶 → {𝐵} ⊆ 𝐶) | |
3 | 1, 2 | fssd 6735 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 {csn 4625 × cxp 5671 ⟶wf 6539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-fun 6545 df-fn 6546 df-f 6547 |
This theorem is referenced by: fconst6 6782 map0g 8897 fdiagfn 8903 mapsncnv 8906 brwdom2 9591 cantnf0 9693 fseqdom 10044 pwsdiagel 17473 setcmon 18070 setcepi 18071 pwsmnd 18723 pws0g 18724 0mhm 18765 pwspjmhm 18776 pwsgrp 19002 pwsinvg 19003 symgpssefmnd 19344 pwscmn 19812 pwsabl 19813 pwsring 20254 pws1 20255 pwscrng 20256 pwslmod 20848 frlmlmod 21677 frlmlss 21679 psrvscacl 21888 psr0cl 21889 psrlmod 21897 mplsubglem 21935 coe1fval3 22121 coe1z 22176 coe1mul2 22182 coe1tm 22186 evls1sca 22236 mamuvs1 22299 mamuvs2 22300 lmconst 23159 cnconst2 23181 pwstps 23528 xkopt 23553 xkopjcn 23554 tmdgsum 23993 tmdgsum2 23994 symgtgp 24004 cstucnd 24183 imasdsf1olem 24273 pwsxms 24435 pwsms 24436 mbfconstlem 25550 mbfmulc2lem 25570 i1fmulc 25627 itg2mulc 25671 dvconst 25840 dvcmul 25869 plypf1 26140 amgmlem 26916 dchrelbas2 27164 resf1o 32507 elrspunidl 33139 ofcccat 34170 lpadlem1 34304 poimirlem28 37116 lflvscl 38544 lflvsdi1 38545 lflvsdi2 38546 lflvsass 38548 evlsvvval 41787 fsuppssind 41817 mhphf 41821 constmap 42124 mendlmod 42608 cantnfresb 42744 ofoafo 42776 naddcnffo 42784 naddcnfid1 42787 naddcnfid2 42788 onnog 42850 dvsconst 43758 expgrowth 43763 mapssbi 44577 dvsinax 45292 amgmlemALT 48227 |
Copyright terms: Public domain | W3C validator |