| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fconst6g | Structured version Visualization version GIF version | ||
| Description: Constant function with loose range. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| fconst6g | ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 6715 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 2 | snssi 4762 | . 2 ⊢ (𝐵 ∈ 𝐶 → {𝐵} ⊆ 𝐶) | |
| 3 | 1, 2 | fssd 6673 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {csn 4579 × cxp 5621 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: fconst6 6718 map0g 8818 fdiagfn 8824 mapsncnv 8827 brwdom2 9484 cantnf0 9590 fseqdom 9939 pwsdiagel 17419 setcmon 18012 setcepi 18013 pwsmnd 18664 pws0g 18665 0mhm 18711 pwspjmhm 18722 pwsgrp 18949 pwsinvg 18950 symgpssefmnd 19293 pwscmn 19760 pwsabl 19761 pwsring 20227 pws1 20228 pwscrng 20229 pwslmod 20891 frlmlmod 21674 frlmlss 21676 psrvscacl 21876 psr0cl 21877 psrlmod 21885 mplsubglem 21924 coe1fval3 22109 coe1z 22165 coe1mul2 22171 coe1tm 22175 evls1sca 22226 rhmply1vsca 22291 mamuvs1 22308 mamuvs2 22309 lmconst 23164 cnconst2 23186 pwstps 23533 xkopt 23558 xkopjcn 23559 tmdgsum 23998 tmdgsum2 23999 symgtgp 24009 cstucnd 24187 imasdsf1olem 24277 pwsxms 24436 pwsms 24437 mbfconstlem 25544 mbfmulc2lem 25564 i1fmulc 25620 itg2mulc 25664 dvconst 25834 dvcmul 25863 plypf1 26133 amgmlem 26916 dchrelbas2 27164 resf1o 32686 elrspunidl 33378 ofcccat 34513 lpadlem1 34647 poimirlem28 37630 lflvscl 39058 lflvsdi1 39059 lflvsdi2 39060 lflvsass 39062 evlsvvval 42539 fsuppssind 42569 mhphf 42573 constmap 42689 mendlmod 43165 cantnfresb 43300 ofoafo 43332 naddcnffo 43340 naddcnfid1 43343 naddcnfid2 43344 onnog 43405 dvsconst 44306 expgrowth 44311 mapssbi 45194 dvsinax 45898 amgmlemALT 49792 |
| Copyright terms: Public domain | W3C validator |