| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fconst6g | Structured version Visualization version GIF version | ||
| Description: Constant function with loose range. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| fconst6g | ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 6747 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 2 | snssi 4772 | . 2 ⊢ (𝐵 ∈ 𝐶 → {𝐵} ⊆ 𝐶) | |
| 3 | 1, 2 | fssd 6705 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {csn 4589 × cxp 5636 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: fconst6 6750 map0g 8857 fdiagfn 8863 mapsncnv 8866 brwdom2 9526 cantnf0 9628 fseqdom 9979 pwsdiagel 17460 setcmon 18049 setcepi 18050 pwsmnd 18699 pws0g 18700 0mhm 18746 pwspjmhm 18757 pwsgrp 18984 pwsinvg 18985 symgpssefmnd 19326 pwscmn 19793 pwsabl 19794 pwsring 20233 pws1 20234 pwscrng 20235 pwslmod 20876 frlmlmod 21658 frlmlss 21660 psrvscacl 21860 psr0cl 21861 psrlmod 21869 mplsubglem 21908 coe1fval3 22093 coe1z 22149 coe1mul2 22155 coe1tm 22159 evls1sca 22210 rhmply1vsca 22275 mamuvs1 22292 mamuvs2 22293 lmconst 23148 cnconst2 23170 pwstps 23517 xkopt 23542 xkopjcn 23543 tmdgsum 23982 tmdgsum2 23983 symgtgp 23993 cstucnd 24171 imasdsf1olem 24261 pwsxms 24420 pwsms 24421 mbfconstlem 25528 mbfmulc2lem 25548 i1fmulc 25604 itg2mulc 25648 dvconst 25818 dvcmul 25847 plypf1 26117 amgmlem 26900 dchrelbas2 27148 resf1o 32653 elrspunidl 33399 ofcccat 34534 lpadlem1 34668 poimirlem28 37642 lflvscl 39070 lflvsdi1 39071 lflvsdi2 39072 lflvsass 39074 evlsvvval 42551 fsuppssind 42581 mhphf 42585 constmap 42701 mendlmod 43178 cantnfresb 43313 ofoafo 43345 naddcnffo 43353 naddcnfid1 43356 naddcnfid2 43357 onnog 43418 dvsconst 44319 expgrowth 44324 mapssbi 45207 dvsinax 45911 amgmlemALT 49792 |
| Copyright terms: Public domain | W3C validator |