| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fconst6g | Structured version Visualization version GIF version | ||
| Description: Constant function with loose range. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| fconst6g | ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 6750 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 2 | snssi 4775 | . 2 ⊢ (𝐵 ∈ 𝐶 → {𝐵} ⊆ 𝐶) | |
| 3 | 1, 2 | fssd 6708 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {csn 4592 × cxp 5639 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: fconst6 6753 map0g 8860 fdiagfn 8866 mapsncnv 8869 brwdom2 9533 cantnf0 9635 fseqdom 9986 pwsdiagel 17467 setcmon 18056 setcepi 18057 pwsmnd 18706 pws0g 18707 0mhm 18753 pwspjmhm 18764 pwsgrp 18991 pwsinvg 18992 symgpssefmnd 19333 pwscmn 19800 pwsabl 19801 pwsring 20240 pws1 20241 pwscrng 20242 pwslmod 20883 frlmlmod 21665 frlmlss 21667 psrvscacl 21867 psr0cl 21868 psrlmod 21876 mplsubglem 21915 coe1fval3 22100 coe1z 22156 coe1mul2 22162 coe1tm 22166 evls1sca 22217 rhmply1vsca 22282 mamuvs1 22299 mamuvs2 22300 lmconst 23155 cnconst2 23177 pwstps 23524 xkopt 23549 xkopjcn 23550 tmdgsum 23989 tmdgsum2 23990 symgtgp 24000 cstucnd 24178 imasdsf1olem 24268 pwsxms 24427 pwsms 24428 mbfconstlem 25535 mbfmulc2lem 25555 i1fmulc 25611 itg2mulc 25655 dvconst 25825 dvcmul 25854 plypf1 26124 amgmlem 26907 dchrelbas2 27155 resf1o 32660 elrspunidl 33406 ofcccat 34541 lpadlem1 34675 poimirlem28 37649 lflvscl 39077 lflvsdi1 39078 lflvsdi2 39079 lflvsass 39081 evlsvvval 42558 fsuppssind 42588 mhphf 42592 constmap 42708 mendlmod 43185 cantnfresb 43320 ofoafo 43352 naddcnffo 43360 naddcnfid1 43363 naddcnfid2 43364 onnog 43425 dvsconst 44326 expgrowth 44331 mapssbi 45214 dvsinax 45918 amgmlemALT 49796 |
| Copyright terms: Public domain | W3C validator |