| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fconst6g | Structured version Visualization version GIF version | ||
| Description: Constant function with loose range. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| fconst6g | ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 6764 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 2 | snssi 4784 | . 2 ⊢ (𝐵 ∈ 𝐶 → {𝐵} ⊆ 𝐶) | |
| 3 | 1, 2 | fssd 6722 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 {csn 4601 × cxp 5652 ⟶wf 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-fun 6532 df-fn 6533 df-f 6534 |
| This theorem is referenced by: fconst6 6767 map0g 8896 fdiagfn 8902 mapsncnv 8905 brwdom2 9585 cantnf0 9687 fseqdom 10038 pwsdiagel 17509 setcmon 18098 setcepi 18099 pwsmnd 18748 pws0g 18749 0mhm 18795 pwspjmhm 18806 pwsgrp 19033 pwsinvg 19034 symgpssefmnd 19375 pwscmn 19842 pwsabl 19843 pwsring 20282 pws1 20283 pwscrng 20284 pwslmod 20925 frlmlmod 21707 frlmlss 21709 psrvscacl 21909 psr0cl 21910 psrlmod 21918 mplsubglem 21957 coe1fval3 22142 coe1z 22198 coe1mul2 22204 coe1tm 22208 evls1sca 22259 rhmply1vsca 22324 mamuvs1 22341 mamuvs2 22342 lmconst 23197 cnconst2 23219 pwstps 23566 xkopt 23591 xkopjcn 23592 tmdgsum 24031 tmdgsum2 24032 symgtgp 24042 cstucnd 24220 imasdsf1olem 24310 pwsxms 24469 pwsms 24470 mbfconstlem 25578 mbfmulc2lem 25598 i1fmulc 25654 itg2mulc 25698 dvconst 25868 dvcmul 25897 plypf1 26167 amgmlem 26950 dchrelbas2 27198 resf1o 32653 elrspunidl 33389 ofcccat 34521 lpadlem1 34655 poimirlem28 37618 lflvscl 39041 lflvsdi1 39042 lflvsdi2 39043 lflvsass 39045 evlsvvval 42533 fsuppssind 42563 mhphf 42567 constmap 42683 mendlmod 43160 cantnfresb 43295 ofoafo 43327 naddcnffo 43335 naddcnfid1 43338 naddcnfid2 43339 onnog 43400 dvsconst 44302 expgrowth 44307 mapssbi 45185 dvsinax 45890 amgmlemALT 49615 |
| Copyright terms: Public domain | W3C validator |