Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elmap | Structured version Visualization version GIF version |
Description: Membership relation for set exponentiation. (Contributed by NM, 8-Dec-2003.) |
Ref | Expression |
---|---|
elmap.1 | ⊢ 𝐴 ∈ V |
elmap.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
elmap | ⊢ (𝐹 ∈ (𝐴 ↑m 𝐵) ↔ 𝐹:𝐵⟶𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmap.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elmap.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | elmapg 8430 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹 ∈ (𝐴 ↑m 𝐵) ↔ 𝐹:𝐵⟶𝐴)) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐹 ∈ (𝐴 ↑m 𝐵) ↔ 𝐹:𝐵⟶𝐴) |
Copyright terms: Public domain | W3C validator |