![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elmap | Structured version Visualization version GIF version |
Description: Membership relation for set exponentiation. (Contributed by NM, 8-Dec-2003.) |
Ref | Expression |
---|---|
elmap.1 | ⊢ 𝐴 ∈ V |
elmap.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
elmap | ⊢ (𝐹 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐹:𝐵⟶𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmap.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elmap.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | elmapg 8260 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐹:𝐵⟶𝐴)) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (𝐹 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐹:𝐵⟶𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∈ wcel 2079 Vcvv 3432 ⟶wf 6213 (class class class)co 7007 ↑𝑚 cmap 8247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ral 3108 df-rex 3109 df-rab 3112 df-v 3434 df-sbc 3702 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-br 4957 df-opab 5019 df-id 5340 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-fv 6225 df-ov 7010 df-oprab 7011 df-mpo 7012 df-map 8249 |
This theorem is referenced by: mapval2 8277 fvmptmap 8285 mapsnconst 8295 mapsncnv 8296 xpmapenlem 8521 pwfseqlem3 9917 tskcard 10038 ingru 10072 rpnnen1lem1 12216 rpnnen1lem3 12217 rpnnen1lem4 12218 rpnnen1lem5 12219 facmapnn 13483 prmreclem2 16070 1arith 16080 vdwlem6 16139 vdwlem7 16140 vdwlem8 16141 vdwlem9 16142 vdwlem11 16144 vdwlem13 16146 prmgapprmo 16215 isfunc 16951 isfuncd 16952 idfucl 16968 cofucl 16975 funcres2b 16984 wunfunc 16986 catcfuccl 17186 funcestrcsetclem9 17215 ismhm 17764 symgval 18226 dfrhm2 19147 isabv 19268 psrelbas 19835 psraddcl 19839 psrmulcllem 19843 psrvscacl 19849 psr0cl 19850 psrnegcl 19852 psr1cl 19858 subrgpsr 19875 mvrf 19880 mplmon 19919 mplcoe1 19921 coe1fval3 20047 00ply1bas 20079 ply1plusgfvi 20081 coe1z 20102 coe1mul2 20108 coe1tm 20112 pjdm 20521 pjfval2 20523 pnrmopn 21623 distgp 22379 indistgp 22380 ehl1eudis 23694 ehl2eudis 23696 elovolmlem 23746 itg2seq 24014 coeeulem 24485 coeeq 24488 aannenlem1 24588 dvntaylp 24630 taylthlem1 24632 taylthlem2 24633 pserdvlem2 24687 lgamgulmlem6 25281 sqff1o 25429 isismt 25990 elee 26351 islno 28209 nmooval 28219 ajfval 28265 h2hcau 28435 h2hlm 28436 hcau 28640 hlimadd 28649 hhcms 28659 hlim0 28691 hhsscms 28734 pjmf1 29172 hosmval 29191 hommval 29192 hodmval 29193 hfsmval 29194 hfmmval 29195 elcnop 29313 ellnop 29314 elhmop 29329 hmopex 29331 nlfnval 29337 elcnfn 29338 ellnfn 29339 dmadjss 29343 dmadjop 29344 adjeu 29345 adjval 29346 hhcno 29360 hhcnf 29361 adjbdln 29539 isst 29669 ishst 29670 maprnin 30128 fpwrelmap 30130 fpwrelmapffs 30131 fply1 30534 eulerpartleme 31194 eulerpartlemt 31202 eulerpartlemr 31205 eulerpartlemmf 31206 eulerpartlemgvv 31207 eulerpartlemgs2 31211 eulerpartlemn 31212 reprinfz1 31466 breprexplemb 31475 breprexpnat 31478 vtsval 31481 circlemethnat 31485 circlemethhgt 31487 mrsubff 32312 mrsubrn 32313 msubff 32330 poimirlem3 34372 poimirlem4 34373 poimirlem17 34386 poimirlem20 34389 poimirlem24 34393 poimirlem25 34394 poimirlem29 34398 poimirlem30 34399 poimirlem31 34400 poimirlem32 34401 isrngohom 34721 islfl 35677 islpolN 38100 constmap 38745 mzpclall 38759 mzpf 38768 mzpindd 38778 mzpcompact2lem 38783 eldiophb 38789 mendring 39228 clsk1independent 39832 k0004lem3 39935 dvnprodlem3 41728 fourierdlem70 41957 fourierdlem102 41989 fourierdlem114 42001 etransclem35 42050 hoicvrrex 42334 ovnhoilem1 42379 ovnovollem2 42435 nnsum3primes4 43389 nnsum3primesprm 43391 ismgmhm 43486 rrx2xpref1o 44140 rrx2linesl 44165 line2 44174 line2x 44176 line2y 44177 aacllem 44336 |
Copyright terms: Public domain | W3C validator |