MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmatmcl Structured version   Visualization version   GIF version

Theorem cpmatmcl 22649
Description: The set of all constant polynomial matrices over a ring 𝑅 is closed under multiplication. (Contributed by AV, 18-Nov-2019.)
Hypotheses
Ref Expression
cpmatsrngpmat.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpmatsrngpmat.p 𝑃 = (Poly1𝑅)
cpmatsrngpmat.c 𝐶 = (𝑁 Mat 𝑃)
Assertion
Ref Expression
cpmatmcl ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝐶)𝑦) ∈ 𝑆)
Distinct variable groups:   𝑥,𝑁,𝑦   𝑥,𝑅,𝑦   𝑦,𝑆
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝑆(𝑥)

Proof of Theorem cpmatmcl
Dummy variables 𝑖 𝑗 𝑐 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cpmatsrngpmat.s . . . . 5 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 cpmatsrngpmat.p . . . . 5 𝑃 = (Poly1𝑅)
3 cpmatsrngpmat.c . . . . 5 𝐶 = (𝑁 Mat 𝑃)
41, 2, 3cpmatmcllem 22648 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))
52ply1ring 22185 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
65ad4antlr 731 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → 𝑃 ∈ Ring)
7 eqid 2728 . . . . . . . . . . . . . . . . 17 (Base‘𝐶) = (Base‘𝐶)
81, 2, 3, 7cpmatpmat 22640 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝐶))
983expa 1115 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝐶))
101, 2, 3, 7cpmatpmat 22640 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝑆) → 𝑦 ∈ (Base‘𝐶))
11103expa 1115 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝑆) → 𝑦 ∈ (Base‘𝐶))
129, 11anim12dan 617 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)))
1312adantr 479 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑖𝑁) → (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)))
1413adantr 479 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)))
15 simpr 483 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑖𝑁) → 𝑖𝑁)
1615anim1i 613 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (𝑖𝑁𝑗𝑁))
17 eqid 2728 . . . . . . . . . . . . 13 (.r𝐶) = (.r𝐶)
183, 7, 17matmulcell 22375 . . . . . . . . . . . 12 ((𝑃 ∈ Ring ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑥(.r𝐶)𝑦)𝑗) = (𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))
196, 14, 16, 18syl3anc 1368 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (𝑖(𝑥(.r𝐶)𝑦)𝑗) = (𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))
2019fveq2d 6906 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗)) = (coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗))))))
2120adantr 479 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑐 ∈ ℕ) → (coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗)) = (coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗))))))
2221fveq1d 6904 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑐 ∈ ℕ) → ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑐) = ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐))
2322eqeq1d 2730 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑐 ∈ ℕ) → (((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑐) = (0g𝑅) ↔ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
2423ralbidva 3173 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (∀𝑐 ∈ ℕ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑐) = (0g𝑅) ↔ ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
2524ralbidva 3173 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑖𝑁) → (∀𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑐) = (0g𝑅) ↔ ∀𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
2625ralbidva 3173 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑐) = (0g𝑅) ↔ ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
274, 26mpbird 256 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑐) = (0g𝑅))
28 simpl 481 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
2928adantr 479 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝑁 ∈ Fin)
30 simpr 483 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
3130adantr 479 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝑅 ∈ Ring)
322, 3pmatring 22622 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
3332adantr 479 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝐶 ∈ Ring)
34 simpl 481 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) → 𝑥𝑆)
3534anim2i 615 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆))
36 df-3an 1086 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝑆) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆))
3735, 36sylibr 233 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝑆))
3837, 8syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥 ∈ (Base‘𝐶))
39 simpr 483 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) → 𝑦𝑆)
4039anim2i 615 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝑆))
41 df-3an 1086 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝑆) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝑆))
4240, 41sylibr 233 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝑆))
4342, 10syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦 ∈ (Base‘𝐶))
447, 17ringcl 20204 . . . . 5 ((𝐶 ∈ Ring ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(.r𝐶)𝑦) ∈ (Base‘𝐶))
4533, 38, 43, 44syl3anc 1368 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(.r𝐶)𝑦) ∈ (Base‘𝐶))
461, 2, 3, 7cpmatel 22641 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(.r𝐶)𝑦) ∈ (Base‘𝐶)) → ((𝑥(.r𝐶)𝑦) ∈ 𝑆 ↔ ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑐) = (0g𝑅)))
4729, 31, 45, 46syl3anc 1368 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ((𝑥(.r𝐶)𝑦) ∈ 𝑆 ↔ ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑐) = (0g𝑅)))
4827, 47mpbird 256 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(.r𝐶)𝑦) ∈ 𝑆)
4948ralrimivva 3198 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝐶)𝑦) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3058  cmpt 5235  cfv 6553  (class class class)co 7426  Fincfn 8972  cn 12252  Basecbs 17189  .rcmulr 17243  0gc0g 17430   Σg cgsu 17431  Ringcrg 20187  Poly1cpl1 22114  coe1cco1 22115   Mat cmat 22335   ConstPolyMat ccpmat 22633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-ot 4641  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7692  df-ofr 7693  df-om 7879  df-1st 8001  df-2nd 8002  df-supp 8174  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-er 8733  df-map 8855  df-pm 8856  df-ixp 8925  df-en 8973  df-dom 8974  df-sdom 8975  df-fin 8976  df-fsupp 9396  df-sup 9475  df-oi 9543  df-card 9972  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-nn 12253  df-2 12315  df-3 12316  df-4 12317  df-5 12318  df-6 12319  df-7 12320  df-8 12321  df-9 12322  df-n0 12513  df-z 12599  df-dec 12718  df-uz 12863  df-fz 13527  df-fzo 13670  df-seq 14009  df-hash 14332  df-struct 17125  df-sets 17142  df-slot 17160  df-ndx 17172  df-base 17190  df-ress 17219  df-plusg 17255  df-mulr 17256  df-sca 17258  df-vsca 17259  df-ip 17260  df-tset 17261  df-ple 17262  df-ds 17264  df-hom 17266  df-cco 17267  df-0g 17432  df-gsum 17433  df-prds 17438  df-pws 17440  df-mre 17575  df-mrc 17576  df-acs 17578  df-mgm 18609  df-sgrp 18688  df-mnd 18704  df-mhm 18749  df-submnd 18750  df-grp 18907  df-minusg 18908  df-sbg 18909  df-mulg 19038  df-subg 19092  df-ghm 19182  df-cntz 19282  df-cmn 19751  df-abl 19752  df-mgp 20089  df-rng 20107  df-ur 20136  df-ring 20189  df-subrng 20497  df-subrg 20522  df-lmod 20759  df-lss 20830  df-sra 21072  df-rgmod 21073  df-dsmm 21680  df-frlm 21695  df-psr 21856  df-mpl 21858  df-opsr 21860  df-psr1 22117  df-ply1 22119  df-coe1 22120  df-mamu 22319  df-mat 22336  df-cpmat 22636
This theorem is referenced by:  cpmatsrgpmat  22651
  Copyright terms: Public domain W3C validator