Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝑅) =
(Base‘𝑅) |
2 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(1r‘𝑅) = (1r‘𝑅) |
3 | 1, 2 | ringidcl 19722 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
4 | 3 | ancli 548 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → (𝑅 ∈ Ring ∧
(1r‘𝑅)
∈ (Base‘𝑅))) |
5 | 4 | adantl 481 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 ∈ Ring ∧
(1r‘𝑅)
∈ (Base‘𝑅))) |
6 | 5 | ad2antrl 724 |
. . . . . . 7
⊢ ((𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → (𝑅 ∈ Ring ∧
(1r‘𝑅)
∈ (Base‘𝑅))) |
7 | | eqid 2738 |
. . . . . . . 8
⊢
(0g‘𝑅) = (0g‘𝑅) |
8 | | cpmatsrngpmat.p |
. . . . . . . 8
⊢ 𝑃 = (Poly1‘𝑅) |
9 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝑃) =
(Base‘𝑃) |
10 | | eqid 2738 |
. . . . . . . 8
⊢
(algSc‘𝑃) =
(algSc‘𝑃) |
11 | 1, 7, 8, 9, 10 | cply1coe0 21380 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧
(1r‘𝑅)
∈ (Base‘𝑅))
→ ∀𝑛 ∈
ℕ ((coe1‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝑛) = (0g‘𝑅)) |
12 | 6, 11 | syl 17 |
. . . . . 6
⊢ ((𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → ∀𝑛 ∈ ℕ
((coe1‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝑛) = (0g‘𝑅)) |
13 | | iftrue 4462 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))) = ((algSc‘𝑃)‘(1r‘𝑅))) |
14 | 13 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅)))) =
(coe1‘((algSc‘𝑃)‘(1r‘𝑅)))) |
15 | 14 | fveq1d 6758 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → ((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) =
((coe1‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝑛)) |
16 | 15 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑖 = 𝑗 → (((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) = (0g‘𝑅) ↔
((coe1‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝑛) = (0g‘𝑅))) |
17 | 16 | ralbidv 3120 |
. . . . . . 7
⊢ (𝑖 = 𝑗 → (∀𝑛 ∈ ℕ
((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) = (0g‘𝑅) ↔ ∀𝑛 ∈ ℕ
((coe1‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝑛) = (0g‘𝑅))) |
18 | 17 | adantr 480 |
. . . . . 6
⊢ ((𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → (∀𝑛 ∈ ℕ
((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) = (0g‘𝑅) ↔ ∀𝑛 ∈ ℕ
((coe1‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝑛) = (0g‘𝑅))) |
19 | 12, 18 | mpbird 256 |
. . . . 5
⊢ ((𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → ∀𝑛 ∈ ℕ
((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) = (0g‘𝑅)) |
20 | 1, 7 | ring0cl 19723 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
(0g‘𝑅)
∈ (Base‘𝑅)) |
21 | 20 | ancli 548 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → (𝑅 ∈ Ring ∧
(0g‘𝑅)
∈ (Base‘𝑅))) |
22 | 21 | adantl 481 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 ∈ Ring ∧
(0g‘𝑅)
∈ (Base‘𝑅))) |
23 | 1, 7, 8, 9, 10 | cply1coe0 21380 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧
(0g‘𝑅)
∈ (Base‘𝑅))
→ ∀𝑛 ∈
ℕ ((coe1‘((algSc‘𝑃)‘(0g‘𝑅)))‘𝑛) = (0g‘𝑅)) |
24 | 22, 23 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
∀𝑛 ∈ ℕ
((coe1‘((algSc‘𝑃)‘(0g‘𝑅)))‘𝑛) = (0g‘𝑅)) |
25 | 24 | ad2antrl 724 |
. . . . . 6
⊢ ((¬
𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → ∀𝑛 ∈ ℕ
((coe1‘((algSc‘𝑃)‘(0g‘𝑅)))‘𝑛) = (0g‘𝑅)) |
26 | | iffalse 4465 |
. . . . . . . . . . 11
⊢ (¬
𝑖 = 𝑗 → if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))) = ((algSc‘𝑃)‘(0g‘𝑅))) |
27 | 26 | adantr 480 |
. . . . . . . . . 10
⊢ ((¬
𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))) = ((algSc‘𝑃)‘(0g‘𝑅))) |
28 | 27 | fveq2d 6760 |
. . . . . . . . 9
⊢ ((¬
𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → (coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅)))) =
(coe1‘((algSc‘𝑃)‘(0g‘𝑅)))) |
29 | 28 | fveq1d 6758 |
. . . . . . . 8
⊢ ((¬
𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → ((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) =
((coe1‘((algSc‘𝑃)‘(0g‘𝑅)))‘𝑛)) |
30 | 29 | eqeq1d 2740 |
. . . . . . 7
⊢ ((¬
𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → (((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) = (0g‘𝑅) ↔
((coe1‘((algSc‘𝑃)‘(0g‘𝑅)))‘𝑛) = (0g‘𝑅))) |
31 | 30 | ralbidv 3120 |
. . . . . 6
⊢ ((¬
𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → (∀𝑛 ∈ ℕ
((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) = (0g‘𝑅) ↔ ∀𝑛 ∈ ℕ
((coe1‘((algSc‘𝑃)‘(0g‘𝑅)))‘𝑛) = (0g‘𝑅))) |
32 | 25, 31 | mpbird 256 |
. . . . 5
⊢ ((¬
𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → ∀𝑛 ∈ ℕ
((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) = (0g‘𝑅)) |
33 | 19, 32 | pm2.61ian 808 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ∀𝑛 ∈ ℕ
((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) = (0g‘𝑅)) |
34 | 33 | ralrimivva 3114 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑛 ∈ ℕ
((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) = (0g‘𝑅)) |
35 | | cpmatsrngpmat.c |
. . . . . . . . 9
⊢ 𝐶 = (𝑁 Mat 𝑃) |
36 | | simpll 763 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑁 ∈ Fin) |
37 | | simplr 765 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑅 ∈ Ring) |
38 | | simprl 767 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) |
39 | | simprr 769 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) |
40 | | eqid 2738 |
. . . . . . . . 9
⊢
(1r‘𝐶) = (1r‘𝐶) |
41 | 8, 35, 10, 7, 2, 36, 37, 38, 39, 40 | pmat1ovscd 21757 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(1r‘𝐶)𝑗) = if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅)))) |
42 | 41 | fveq2d 6760 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (coe1‘(𝑖(1r‘𝐶)𝑗)) = (coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))) |
43 | 42 | fveq1d 6758 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((coe1‘(𝑖(1r‘𝐶)𝑗))‘𝑛) = ((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛)) |
44 | 43 | eqeq1d 2740 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (((coe1‘(𝑖(1r‘𝐶)𝑗))‘𝑛) = (0g‘𝑅) ↔ ((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) = (0g‘𝑅))) |
45 | 44 | ralbidv 3120 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (∀𝑛 ∈ ℕ
((coe1‘(𝑖(1r‘𝐶)𝑗))‘𝑛) = (0g‘𝑅) ↔ ∀𝑛 ∈ ℕ
((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) = (0g‘𝑅))) |
46 | 45 | 2ralbidva 3121 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑛 ∈ ℕ
((coe1‘(𝑖(1r‘𝐶)𝑗))‘𝑛) = (0g‘𝑅) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑛 ∈ ℕ
((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) = (0g‘𝑅))) |
47 | 34, 46 | mpbird 256 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑛 ∈ ℕ
((coe1‘(𝑖(1r‘𝐶)𝑗))‘𝑛) = (0g‘𝑅)) |
48 | 8, 35 | pmatring 21749 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring) |
49 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐶) =
(Base‘𝐶) |
50 | 49, 40 | ringidcl 19722 |
. . . 4
⊢ (𝐶 ∈ Ring →
(1r‘𝐶)
∈ (Base‘𝐶)) |
51 | 48, 50 | syl 17 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(1r‘𝐶)
∈ (Base‘𝐶)) |
52 | | cpmatsrngpmat.s |
. . . 4
⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
53 | 52, 8, 35, 49 | cpmatel 21768 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧
(1r‘𝐶)
∈ (Base‘𝐶))
→ ((1r‘𝐶) ∈ 𝑆 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑛 ∈ ℕ
((coe1‘(𝑖(1r‘𝐶)𝑗))‘𝑛) = (0g‘𝑅))) |
54 | 51, 53 | mpd3an3 1460 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
((1r‘𝐶)
∈ 𝑆 ↔
∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑛 ∈ ℕ
((coe1‘(𝑖(1r‘𝐶)𝑗))‘𝑛) = (0g‘𝑅))) |
55 | 47, 54 | mpbird 256 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(1r‘𝐶)
∈ 𝑆) |