| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 2 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 3 | 1, 2 | ringidcl 20262 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
| 4 | 3 | ancli 548 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → (𝑅 ∈ Ring ∧
(1r‘𝑅)
∈ (Base‘𝑅))) |
| 5 | 4 | adantl 481 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 ∈ Ring ∧
(1r‘𝑅)
∈ (Base‘𝑅))) |
| 6 | 5 | ad2antrl 728 |
. . . . . . 7
⊢ ((𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → (𝑅 ∈ Ring ∧
(1r‘𝑅)
∈ (Base‘𝑅))) |
| 7 | | eqid 2737 |
. . . . . . . 8
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 8 | | cpmatsrngpmat.p |
. . . . . . . 8
⊢ 𝑃 = (Poly1‘𝑅) |
| 9 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 10 | | eqid 2737 |
. . . . . . . 8
⊢
(algSc‘𝑃) =
(algSc‘𝑃) |
| 11 | 1, 7, 8, 9, 10 | cply1coe0 22305 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧
(1r‘𝑅)
∈ (Base‘𝑅))
→ ∀𝑛 ∈
ℕ ((coe1‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝑛) = (0g‘𝑅)) |
| 12 | 6, 11 | syl 17 |
. . . . . 6
⊢ ((𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → ∀𝑛 ∈ ℕ
((coe1‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝑛) = (0g‘𝑅)) |
| 13 | | iftrue 4531 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))) = ((algSc‘𝑃)‘(1r‘𝑅))) |
| 14 | 13 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅)))) =
(coe1‘((algSc‘𝑃)‘(1r‘𝑅)))) |
| 15 | 14 | fveq1d 6908 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → ((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) =
((coe1‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝑛)) |
| 16 | 15 | eqeq1d 2739 |
. . . . . . . 8
⊢ (𝑖 = 𝑗 → (((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) = (0g‘𝑅) ↔
((coe1‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝑛) = (0g‘𝑅))) |
| 17 | 16 | ralbidv 3178 |
. . . . . . 7
⊢ (𝑖 = 𝑗 → (∀𝑛 ∈ ℕ
((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) = (0g‘𝑅) ↔ ∀𝑛 ∈ ℕ
((coe1‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝑛) = (0g‘𝑅))) |
| 18 | 17 | adantr 480 |
. . . . . 6
⊢ ((𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → (∀𝑛 ∈ ℕ
((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) = (0g‘𝑅) ↔ ∀𝑛 ∈ ℕ
((coe1‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝑛) = (0g‘𝑅))) |
| 19 | 12, 18 | mpbird 257 |
. . . . 5
⊢ ((𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → ∀𝑛 ∈ ℕ
((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) = (0g‘𝑅)) |
| 20 | 1, 7 | ring0cl 20264 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
(0g‘𝑅)
∈ (Base‘𝑅)) |
| 21 | 20 | ancli 548 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → (𝑅 ∈ Ring ∧
(0g‘𝑅)
∈ (Base‘𝑅))) |
| 22 | 21 | adantl 481 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 ∈ Ring ∧
(0g‘𝑅)
∈ (Base‘𝑅))) |
| 23 | 1, 7, 8, 9, 10 | cply1coe0 22305 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧
(0g‘𝑅)
∈ (Base‘𝑅))
→ ∀𝑛 ∈
ℕ ((coe1‘((algSc‘𝑃)‘(0g‘𝑅)))‘𝑛) = (0g‘𝑅)) |
| 24 | 22, 23 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
∀𝑛 ∈ ℕ
((coe1‘((algSc‘𝑃)‘(0g‘𝑅)))‘𝑛) = (0g‘𝑅)) |
| 25 | 24 | ad2antrl 728 |
. . . . . 6
⊢ ((¬
𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → ∀𝑛 ∈ ℕ
((coe1‘((algSc‘𝑃)‘(0g‘𝑅)))‘𝑛) = (0g‘𝑅)) |
| 26 | | iffalse 4534 |
. . . . . . . . . . 11
⊢ (¬
𝑖 = 𝑗 → if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))) = ((algSc‘𝑃)‘(0g‘𝑅))) |
| 27 | 26 | adantr 480 |
. . . . . . . . . 10
⊢ ((¬
𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))) = ((algSc‘𝑃)‘(0g‘𝑅))) |
| 28 | 27 | fveq2d 6910 |
. . . . . . . . 9
⊢ ((¬
𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → (coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅)))) =
(coe1‘((algSc‘𝑃)‘(0g‘𝑅)))) |
| 29 | 28 | fveq1d 6908 |
. . . . . . . 8
⊢ ((¬
𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → ((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) =
((coe1‘((algSc‘𝑃)‘(0g‘𝑅)))‘𝑛)) |
| 30 | 29 | eqeq1d 2739 |
. . . . . . 7
⊢ ((¬
𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → (((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) = (0g‘𝑅) ↔
((coe1‘((algSc‘𝑃)‘(0g‘𝑅)))‘𝑛) = (0g‘𝑅))) |
| 31 | 30 | ralbidv 3178 |
. . . . . 6
⊢ ((¬
𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → (∀𝑛 ∈ ℕ
((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) = (0g‘𝑅) ↔ ∀𝑛 ∈ ℕ
((coe1‘((algSc‘𝑃)‘(0g‘𝑅)))‘𝑛) = (0g‘𝑅))) |
| 32 | 25, 31 | mpbird 257 |
. . . . 5
⊢ ((¬
𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → ∀𝑛 ∈ ℕ
((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) = (0g‘𝑅)) |
| 33 | 19, 32 | pm2.61ian 812 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ∀𝑛 ∈ ℕ
((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) = (0g‘𝑅)) |
| 34 | 33 | ralrimivva 3202 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑛 ∈ ℕ
((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) = (0g‘𝑅)) |
| 35 | | cpmatsrngpmat.c |
. . . . . . . . 9
⊢ 𝐶 = (𝑁 Mat 𝑃) |
| 36 | | simpll 767 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑁 ∈ Fin) |
| 37 | | simplr 769 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑅 ∈ Ring) |
| 38 | | simprl 771 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) |
| 39 | | simprr 773 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) |
| 40 | | eqid 2737 |
. . . . . . . . 9
⊢
(1r‘𝐶) = (1r‘𝐶) |
| 41 | 8, 35, 10, 7, 2, 36, 37, 38, 39, 40 | pmat1ovscd 22706 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(1r‘𝐶)𝑗) = if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅)))) |
| 42 | 41 | fveq2d 6910 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (coe1‘(𝑖(1r‘𝐶)𝑗)) = (coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))) |
| 43 | 42 | fveq1d 6908 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((coe1‘(𝑖(1r‘𝐶)𝑗))‘𝑛) = ((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛)) |
| 44 | 43 | eqeq1d 2739 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (((coe1‘(𝑖(1r‘𝐶)𝑗))‘𝑛) = (0g‘𝑅) ↔ ((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) = (0g‘𝑅))) |
| 45 | 44 | ralbidv 3178 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (∀𝑛 ∈ ℕ
((coe1‘(𝑖(1r‘𝐶)𝑗))‘𝑛) = (0g‘𝑅) ↔ ∀𝑛 ∈ ℕ
((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) = (0g‘𝑅))) |
| 46 | 45 | 2ralbidva 3219 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑛 ∈ ℕ
((coe1‘(𝑖(1r‘𝐶)𝑗))‘𝑛) = (0g‘𝑅) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑛 ∈ ℕ
((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))))‘𝑛) = (0g‘𝑅))) |
| 47 | 34, 46 | mpbird 257 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑛 ∈ ℕ
((coe1‘(𝑖(1r‘𝐶)𝑗))‘𝑛) = (0g‘𝑅)) |
| 48 | 8, 35 | pmatring 22698 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring) |
| 49 | | eqid 2737 |
. . . . 5
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 50 | 49, 40 | ringidcl 20262 |
. . . 4
⊢ (𝐶 ∈ Ring →
(1r‘𝐶)
∈ (Base‘𝐶)) |
| 51 | 48, 50 | syl 17 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(1r‘𝐶)
∈ (Base‘𝐶)) |
| 52 | | cpmatsrngpmat.s |
. . . 4
⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
| 53 | 52, 8, 35, 49 | cpmatel 22717 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧
(1r‘𝐶)
∈ (Base‘𝐶))
→ ((1r‘𝐶) ∈ 𝑆 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑛 ∈ ℕ
((coe1‘(𝑖(1r‘𝐶)𝑗))‘𝑛) = (0g‘𝑅))) |
| 54 | 51, 53 | mpd3an3 1464 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
((1r‘𝐶)
∈ 𝑆 ↔
∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑛 ∈ ℕ
((coe1‘(𝑖(1r‘𝐶)𝑗))‘𝑛) = (0g‘𝑅))) |
| 55 | 47, 54 | mpbird 257 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(1r‘𝐶)
∈ 𝑆) |