MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1elcpmat Structured version   Visualization version   GIF version

Theorem 1elcpmat 20737
Description: The identity of the ring of all polynomial matrices over the ring 𝑅 is a constant polynomial matrix. (Contributed by AV, 16-Nov-2019.)
Hypotheses
Ref Expression
cpmatsrngpmat.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpmatsrngpmat.p 𝑃 = (Poly1𝑅)
cpmatsrngpmat.c 𝐶 = (𝑁 Mat 𝑃)
Assertion
Ref Expression
1elcpmat ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐶) ∈ 𝑆)

Proof of Theorem 1elcpmat
Dummy variables 𝑖 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2813 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2813 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
31, 2ringidcl 18773 . . . . . . . . . 10 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
43ancli 540 . . . . . . . . 9 (𝑅 ∈ Ring → (𝑅 ∈ Ring ∧ (1r𝑅) ∈ (Base‘𝑅)))
54adantl 469 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 ∈ Ring ∧ (1r𝑅) ∈ (Base‘𝑅)))
65ad2antrl 710 . . . . . . 7 ((𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖𝑁𝑗𝑁))) → (𝑅 ∈ Ring ∧ (1r𝑅) ∈ (Base‘𝑅)))
7 eqid 2813 . . . . . . . 8 (0g𝑅) = (0g𝑅)
8 cpmatsrngpmat.p . . . . . . . 8 𝑃 = (Poly1𝑅)
9 eqid 2813 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
10 eqid 2813 . . . . . . . 8 (algSc‘𝑃) = (algSc‘𝑃)
111, 7, 8, 9, 10cply1coe0 19880 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ (Base‘𝑅)) → ∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘(1r𝑅)))‘𝑛) = (0g𝑅))
126, 11syl 17 . . . . . 6 ((𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖𝑁𝑗𝑁))) → ∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘(1r𝑅)))‘𝑛) = (0g𝑅))
13 iftrue 4292 . . . . . . . . . . 11 (𝑖 = 𝑗 → if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r𝑅)), ((algSc‘𝑃)‘(0g𝑅))) = ((algSc‘𝑃)‘(1r𝑅)))
1413fveq2d 6415 . . . . . . . . . 10 (𝑖 = 𝑗 → (coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r𝑅)), ((algSc‘𝑃)‘(0g𝑅)))) = (coe1‘((algSc‘𝑃)‘(1r𝑅))))
1514fveq1d 6413 . . . . . . . . 9 (𝑖 = 𝑗 → ((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r𝑅)), ((algSc‘𝑃)‘(0g𝑅))))‘𝑛) = ((coe1‘((algSc‘𝑃)‘(1r𝑅)))‘𝑛))
1615eqeq1d 2815 . . . . . . . 8 (𝑖 = 𝑗 → (((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r𝑅)), ((algSc‘𝑃)‘(0g𝑅))))‘𝑛) = (0g𝑅) ↔ ((coe1‘((algSc‘𝑃)‘(1r𝑅)))‘𝑛) = (0g𝑅)))
1716ralbidv 3181 . . . . . . 7 (𝑖 = 𝑗 → (∀𝑛 ∈ ℕ ((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r𝑅)), ((algSc‘𝑃)‘(0g𝑅))))‘𝑛) = (0g𝑅) ↔ ∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘(1r𝑅)))‘𝑛) = (0g𝑅)))
1817adantr 468 . . . . . 6 ((𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖𝑁𝑗𝑁))) → (∀𝑛 ∈ ℕ ((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r𝑅)), ((algSc‘𝑃)‘(0g𝑅))))‘𝑛) = (0g𝑅) ↔ ∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘(1r𝑅)))‘𝑛) = (0g𝑅)))
1912, 18mpbird 248 . . . . 5 ((𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖𝑁𝑗𝑁))) → ∀𝑛 ∈ ℕ ((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r𝑅)), ((algSc‘𝑃)‘(0g𝑅))))‘𝑛) = (0g𝑅))
201, 7ring0cl 18774 . . . . . . . . . 10 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
2120ancli 540 . . . . . . . . 9 (𝑅 ∈ Ring → (𝑅 ∈ Ring ∧ (0g𝑅) ∈ (Base‘𝑅)))
2221adantl 469 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 ∈ Ring ∧ (0g𝑅) ∈ (Base‘𝑅)))
231, 7, 8, 9, 10cply1coe0 19880 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (0g𝑅) ∈ (Base‘𝑅)) → ∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘(0g𝑅)))‘𝑛) = (0g𝑅))
2422, 23syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘(0g𝑅)))‘𝑛) = (0g𝑅))
2524ad2antrl 710 . . . . . 6 ((¬ 𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖𝑁𝑗𝑁))) → ∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘(0g𝑅)))‘𝑛) = (0g𝑅))
26 iffalse 4295 . . . . . . . . . . 11 𝑖 = 𝑗 → if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r𝑅)), ((algSc‘𝑃)‘(0g𝑅))) = ((algSc‘𝑃)‘(0g𝑅)))
2726adantr 468 . . . . . . . . . 10 ((¬ 𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖𝑁𝑗𝑁))) → if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r𝑅)), ((algSc‘𝑃)‘(0g𝑅))) = ((algSc‘𝑃)‘(0g𝑅)))
2827fveq2d 6415 . . . . . . . . 9 ((¬ 𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖𝑁𝑗𝑁))) → (coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r𝑅)), ((algSc‘𝑃)‘(0g𝑅)))) = (coe1‘((algSc‘𝑃)‘(0g𝑅))))
2928fveq1d 6413 . . . . . . . 8 ((¬ 𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖𝑁𝑗𝑁))) → ((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r𝑅)), ((algSc‘𝑃)‘(0g𝑅))))‘𝑛) = ((coe1‘((algSc‘𝑃)‘(0g𝑅)))‘𝑛))
3029eqeq1d 2815 . . . . . . 7 ((¬ 𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖𝑁𝑗𝑁))) → (((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r𝑅)), ((algSc‘𝑃)‘(0g𝑅))))‘𝑛) = (0g𝑅) ↔ ((coe1‘((algSc‘𝑃)‘(0g𝑅)))‘𝑛) = (0g𝑅)))
3130ralbidv 3181 . . . . . 6 ((¬ 𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖𝑁𝑗𝑁))) → (∀𝑛 ∈ ℕ ((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r𝑅)), ((algSc‘𝑃)‘(0g𝑅))))‘𝑛) = (0g𝑅) ↔ ∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘(0g𝑅)))‘𝑛) = (0g𝑅)))
3225, 31mpbird 248 . . . . 5 ((¬ 𝑖 = 𝑗 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖𝑁𝑗𝑁))) → ∀𝑛 ∈ ℕ ((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r𝑅)), ((algSc‘𝑃)‘(0g𝑅))))‘𝑛) = (0g𝑅))
3319, 32pm2.61ian 837 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖𝑁𝑗𝑁)) → ∀𝑛 ∈ ℕ ((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r𝑅)), ((algSc‘𝑃)‘(0g𝑅))))‘𝑛) = (0g𝑅))
3433ralrimivva 3166 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑖𝑁𝑗𝑁𝑛 ∈ ℕ ((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r𝑅)), ((algSc‘𝑃)‘(0g𝑅))))‘𝑛) = (0g𝑅))
35 cpmatsrngpmat.c . . . . . . . . 9 𝐶 = (𝑁 Mat 𝑃)
36 simpll 774 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖𝑁𝑗𝑁)) → 𝑁 ∈ Fin)
37 simplr 776 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Ring)
38 simprl 778 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
39 simprr 780 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
40 eqid 2813 . . . . . . . . 9 (1r𝐶) = (1r𝐶)
418, 35, 10, 7, 2, 36, 37, 38, 39, 40pmat1ovscd 20722 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(1r𝐶)𝑗) = if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r𝑅)), ((algSc‘𝑃)‘(0g𝑅))))
4241fveq2d 6415 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖𝑁𝑗𝑁)) → (coe1‘(𝑖(1r𝐶)𝑗)) = (coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r𝑅)), ((algSc‘𝑃)‘(0g𝑅)))))
4342fveq1d 6413 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖𝑁𝑗𝑁)) → ((coe1‘(𝑖(1r𝐶)𝑗))‘𝑛) = ((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r𝑅)), ((algSc‘𝑃)‘(0g𝑅))))‘𝑛))
4443eqeq1d 2815 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖𝑁𝑗𝑁)) → (((coe1‘(𝑖(1r𝐶)𝑗))‘𝑛) = (0g𝑅) ↔ ((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r𝑅)), ((algSc‘𝑃)‘(0g𝑅))))‘𝑛) = (0g𝑅)))
4544ralbidv 3181 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖𝑁𝑗𝑁)) → (∀𝑛 ∈ ℕ ((coe1‘(𝑖(1r𝐶)𝑗))‘𝑛) = (0g𝑅) ↔ ∀𝑛 ∈ ℕ ((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r𝑅)), ((algSc‘𝑃)‘(0g𝑅))))‘𝑛) = (0g𝑅)))
46452ralbidva 3183 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (∀𝑖𝑁𝑗𝑁𝑛 ∈ ℕ ((coe1‘(𝑖(1r𝐶)𝑗))‘𝑛) = (0g𝑅) ↔ ∀𝑖𝑁𝑗𝑁𝑛 ∈ ℕ ((coe1‘if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r𝑅)), ((algSc‘𝑃)‘(0g𝑅))))‘𝑛) = (0g𝑅)))
4734, 46mpbird 248 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑖𝑁𝑗𝑁𝑛 ∈ ℕ ((coe1‘(𝑖(1r𝐶)𝑗))‘𝑛) = (0g𝑅))
488, 35pmatring 20715 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
49 eqid 2813 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
5049, 40ringidcl 18773 . . . 4 (𝐶 ∈ Ring → (1r𝐶) ∈ (Base‘𝐶))
5148, 50syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐶) ∈ (Base‘𝐶))
52 cpmatsrngpmat.s . . . 4 𝑆 = (𝑁 ConstPolyMat 𝑅)
5352, 8, 35, 49cpmatel 20733 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (1r𝐶) ∈ (Base‘𝐶)) → ((1r𝐶) ∈ 𝑆 ↔ ∀𝑖𝑁𝑗𝑁𝑛 ∈ ℕ ((coe1‘(𝑖(1r𝐶)𝑗))‘𝑛) = (0g𝑅)))
5451, 53mpd3an3 1579 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((1r𝐶) ∈ 𝑆 ↔ ∀𝑖𝑁𝑗𝑁𝑛 ∈ ℕ ((coe1‘(𝑖(1r𝐶)𝑗))‘𝑛) = (0g𝑅)))
5547, 54mpbird 248 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐶) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1637  wcel 2157  wral 3103  ifcif 4286  cfv 6104  (class class class)co 6877  Fincfn 8195  cn 11308  Basecbs 16071  0gc0g 16308  1rcur 18706  Ringcrg 18752  algSccascl 19523  Poly1cpl1 19758  coe1cco1 19759   Mat cmat 20427   ConstPolyMat ccpmat 20725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-rep 4971  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-pss 3792  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-tp 4382  df-op 4384  df-ot 4386  df-uni 4638  df-int 4677  df-iun 4721  df-iin 4722  df-br 4852  df-opab 4914  df-mpt 4931  df-tr 4954  df-id 5226  df-eprel 5231  df-po 5239  df-so 5240  df-fr 5277  df-se 5278  df-we 5279  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-pred 5900  df-ord 5946  df-on 5947  df-lim 5948  df-suc 5949  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-isom 6113  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-of 7130  df-ofr 7131  df-om 7299  df-1st 7401  df-2nd 7402  df-supp 7533  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-map 8097  df-pm 8098  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fsupp 8518  df-sup 8590  df-oi 8657  df-card 9051  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10556  df-neg 10557  df-nn 11309  df-2 11367  df-3 11368  df-4 11369  df-5 11370  df-6 11371  df-7 11372  df-8 11373  df-9 11374  df-n0 11563  df-z 11647  df-dec 11763  df-uz 11908  df-fz 12553  df-fzo 12693  df-seq 13028  df-hash 13341  df-struct 16073  df-ndx 16074  df-slot 16075  df-base 16077  df-sets 16078  df-ress 16079  df-plusg 16169  df-mulr 16170  df-sca 16172  df-vsca 16173  df-ip 16174  df-tset 16175  df-ple 16176  df-ds 16178  df-hom 16180  df-cco 16181  df-0g 16310  df-gsum 16311  df-prds 16316  df-pws 16318  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-submnd 17544  df-grp 17633  df-minusg 17634  df-sbg 17635  df-mulg 17749  df-subg 17796  df-ghm 17863  df-cntz 17954  df-cmn 18399  df-abl 18400  df-mgp 18695  df-ur 18707  df-ring 18754  df-subrg 18985  df-lmod 19072  df-lss 19140  df-sra 19384  df-rgmod 19385  df-ascl 19526  df-psr 19568  df-mvr 19569  df-mpl 19570  df-opsr 19572  df-psr1 19761  df-vr1 19762  df-ply1 19763  df-coe1 19764  df-dsmm 20290  df-frlm 20305  df-mamu 20404  df-mat 20428  df-cpmat 20728
This theorem is referenced by:  cpmatsubgpmat  20742  cpmatsrgpmat  20743
  Copyright terms: Public domain W3C validator