![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > natffn | Structured version Visualization version GIF version |
Description: The natural transformation set operation is a well-defined function. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
natrcl.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
Ref | Expression |
---|---|
natffn | ⊢ 𝑁 Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | natrcl.1 | . . 3 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
2 | eqid 2724 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
3 | eqid 2724 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
4 | eqid 2724 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
5 | eqid 2724 | . . 3 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
6 | 1, 2, 3, 4, 5 | natfval 17905 | . 2 ⊢ 𝑁 = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ ⦋(1st ‘𝑓) / 𝑟⦌⦋(1st ‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈ (Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(⟨(𝑟‘𝑥), (𝑟‘𝑦)⟩(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(⟨(𝑟‘𝑥), (𝑠‘𝑥)⟩(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
7 | ovex 7435 | . . . . . . 7 ⊢ ((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∈ V | |
8 | 7 | rgenw 3057 | . . . . . 6 ⊢ ∀𝑥 ∈ (Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∈ V |
9 | ixpexg 8913 | . . . . . 6 ⊢ (∀𝑥 ∈ (Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∈ V → X𝑥 ∈ (Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∈ V) | |
10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ X𝑥 ∈ (Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∈ V |
11 | 10 | rabex 5323 | . . . 4 ⊢ {𝑎 ∈ X𝑥 ∈ (Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(⟨(𝑟‘𝑥), (𝑟‘𝑦)⟩(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(⟨(𝑟‘𝑥), (𝑠‘𝑥)⟩(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} ∈ V |
12 | 11 | csbex 5302 | . . 3 ⊢ ⦋(1st ‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈ (Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(⟨(𝑟‘𝑥), (𝑟‘𝑦)⟩(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(⟨(𝑟‘𝑥), (𝑠‘𝑥)⟩(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} ∈ V |
13 | 12 | csbex 5302 | . 2 ⊢ ⦋(1st ‘𝑓) / 𝑟⦌⦋(1st ‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈ (Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(⟨(𝑟‘𝑥), (𝑟‘𝑦)⟩(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(⟨(𝑟‘𝑥), (𝑠‘𝑥)⟩(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} ∈ V |
14 | 6, 13 | fnmpoi 8050 | 1 ⊢ 𝑁 Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 ∀wral 3053 {crab 3424 Vcvv 3466 ⦋csb 3886 ⟨cop 4627 × cxp 5665 Fn wfn 6529 ‘cfv 6534 (class class class)co 7402 1st c1st 7967 2nd c2nd 7968 Xcixp 8888 Basecbs 17149 Hom chom 17213 compcco 17214 Func cfunc 17809 Nat cnat 17900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-1st 7969 df-2nd 7970 df-ixp 8889 df-func 17813 df-nat 17902 |
This theorem is referenced by: fuchom 17921 fuchomOLD 17922 |
Copyright terms: Public domain | W3C validator |