MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  natffn Structured version   Visualization version   GIF version

Theorem natffn 16816
Description: The natural transformation set operation is a well-defined function. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypothesis
Ref Expression
natrcl.1 𝑁 = (𝐶 Nat 𝐷)
Assertion
Ref Expression
natffn 𝑁 Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷))

Proof of Theorem natffn
Dummy variables 𝑥 𝑓 𝑦 𝑎 𝑔 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 natrcl.1 . . 3 𝑁 = (𝐶 Nat 𝐷)
2 eqid 2771 . . 3 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2771 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
4 eqid 2771 . . 3 (Hom ‘𝐷) = (Hom ‘𝐷)
5 eqid 2771 . . 3 (comp‘𝐷) = (comp‘𝐷)
61, 2, 3, 4, 5natfval 16813 . 2 𝑁 = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀ ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
7 ovex 6827 . . . . . . 7 ((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∈ V
87rgenw 3073 . . . . . 6 𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∈ V
9 ixpexg 8090 . . . . . 6 (∀𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∈ V → X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∈ V)
108, 9ax-mp 5 . . . . 5 X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∈ V
1110rabex 4947 . . . 4 {𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀ ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ V
1211csbex 4928 . . 3 (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀ ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ V
1312csbex 4928 . 2 (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀ ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ V
146, 13fnmpt2i 7393 1 𝑁 Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1631  wcel 2145  wral 3061  {crab 3065  Vcvv 3351  csb 3682  cop 4323   × cxp 5248   Fn wfn 6025  cfv 6030  (class class class)co 6796  1st c1st 7317  2nd c2nd 7318  Xcixp 8066  Basecbs 16064  Hom chom 16160  compcco 16161   Func cfunc 16721   Nat cnat 16808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320  df-ixp 8067  df-func 16725  df-nat 16810
This theorem is referenced by:  fuchom  16828
  Copyright terms: Public domain W3C validator