MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  natffn Structured version   Visualization version   GIF version

Theorem natffn 17908
Description: The natural transformation set operation is a well-defined function. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypothesis
Ref Expression
natrcl.1 𝑁 = (𝐶 Nat 𝐷)
Assertion
Ref Expression
natffn 𝑁 Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷))

Proof of Theorem natffn
Dummy variables 𝑥 𝑓 𝑦 𝑎 𝑔 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 natrcl.1 . . 3 𝑁 = (𝐶 Nat 𝐷)
2 eqid 2724 . . 3 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2724 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
4 eqid 2724 . . 3 (Hom ‘𝐷) = (Hom ‘𝐷)
5 eqid 2724 . . 3 (comp‘𝐷) = (comp‘𝐷)
61, 2, 3, 4, 5natfval 17905 . 2 𝑁 = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀ ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
7 ovex 7435 . . . . . . 7 ((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∈ V
87rgenw 3057 . . . . . 6 𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∈ V
9 ixpexg 8913 . . . . . 6 (∀𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∈ V → X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∈ V)
108, 9ax-mp 5 . . . . 5 X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∈ V
1110rabex 5323 . . . 4 {𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀ ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ V
1211csbex 5302 . . 3 (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀ ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ V
1312csbex 5302 . 2 (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀ ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ V
146, 13fnmpoi 8050 1 𝑁 Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  wral 3053  {crab 3424  Vcvv 3466  csb 3886  cop 4627   × cxp 5665   Fn wfn 6529  cfv 6534  (class class class)co 7402  1st c1st 7967  2nd c2nd 7968  Xcixp 8888  Basecbs 17149  Hom chom 17213  compcco 17214   Func cfunc 17809   Nat cnat 17900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-1st 7969  df-2nd 7970  df-ixp 8889  df-func 17813  df-nat 17902
This theorem is referenced by:  fuchom  17921  fuchomOLD  17922
  Copyright terms: Public domain W3C validator