| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > natffn | Structured version Visualization version GIF version | ||
| Description: The natural transformation set operation is a well-defined function. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| natrcl.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| Ref | Expression |
|---|---|
| natffn | ⊢ 𝑁 Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natrcl.1 | . . 3 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 2 | eqid 2734 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | eqid 2734 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 4 | eqid 2734 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 5 | eqid 2734 | . . 3 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
| 6 | 1, 2, 3, 4, 5 | natfval 17947 | . 2 ⊢ 𝑁 = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ ⦋(1st ‘𝑓) / 𝑟⦌⦋(1st ‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈ (Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
| 7 | ovex 7432 | . . . . . . 7 ⊢ ((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∈ V | |
| 8 | 7 | rgenw 3054 | . . . . . 6 ⊢ ∀𝑥 ∈ (Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∈ V |
| 9 | ixpexg 8930 | . . . . . 6 ⊢ (∀𝑥 ∈ (Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∈ V → X𝑥 ∈ (Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∈ V) | |
| 10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ X𝑥 ∈ (Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∈ V |
| 11 | 10 | rabex 5306 | . . . 4 ⊢ {𝑎 ∈ X𝑥 ∈ (Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} ∈ V |
| 12 | 11 | csbex 5278 | . . 3 ⊢ ⦋(1st ‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈ (Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} ∈ V |
| 13 | 12 | csbex 5278 | . 2 ⊢ ⦋(1st ‘𝑓) / 𝑟⦌⦋(1st ‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈ (Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} ∈ V |
| 14 | 6, 13 | fnmpoi 8063 | 1 ⊢ 𝑁 Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 ∀wral 3050 {crab 3413 Vcvv 3457 ⦋csb 3872 〈cop 4605 × cxp 5649 Fn wfn 6522 ‘cfv 6527 (class class class)co 7399 1st c1st 7980 2nd c2nd 7981 Xcixp 8905 Basecbs 17213 Hom chom 17267 compcco 17268 Func cfunc 17852 Nat cnat 17942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-oprab 7403 df-mpo 7404 df-1st 7982 df-2nd 7983 df-ixp 8906 df-func 17856 df-nat 17944 |
| This theorem is referenced by: fuchom 17962 |
| Copyright terms: Public domain | W3C validator |