Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfdm Structured version   Visualization version   GIF version

Theorem cantnfdm 9111
 Description: The domain of the Cantor normal form function (in later lemmas we will use dom (𝐴 CNF 𝐵) to abbreviate "the set of finitely supported functions from 𝐵 to 𝐴"). (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnffval.s 𝑆 = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}
cantnffval.a (𝜑𝐴 ∈ On)
cantnffval.b (𝜑𝐵 ∈ On)
Assertion
Ref Expression
cantnfdm (𝜑 → dom (𝐴 CNF 𝐵) = 𝑆)
Distinct variable groups:   𝐴,𝑔   𝐵,𝑔
Allowed substitution hints:   𝜑(𝑔)   𝑆(𝑔)

Proof of Theorem cantnfdm
Dummy variables 𝑓 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnffval.s . . . 4 𝑆 = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}
2 cantnffval.a . . . 4 (𝜑𝐴 ∈ On)
3 cantnffval.b . . . 4 (𝜑𝐵 ∈ On)
41, 2, 3cantnffval 9110 . . 3 (𝜑 → (𝐴 CNF 𝐵) = (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
54dmeqd 5755 . 2 (𝜑 → dom (𝐴 CNF 𝐵) = dom (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
6 fvex 6664 . . . . 5 (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) ∈ V
76csbex 5196 . . . 4 OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) ∈ V
87rgenw 3144 . . 3 𝑓𝑆 OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) ∈ V
9 dmmptg 6077 . . 3 (∀𝑓𝑆 OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) ∈ V → dom (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )) = 𝑆)
108, 9ax-mp 5 . 2 dom (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )) = 𝑆
115, 10syl6eq 2875 1 (𝜑 → dom (𝐴 CNF 𝐵) = 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2115  ∀wral 3132  {crab 3136  Vcvv 3479  ⦋csb 3865  ∅c0 4274   class class class wbr 5047   ↦ cmpt 5127   E cep 5445  dom cdm 5536  Oncon0 6172  ‘cfv 6336  (class class class)co 7138   ∈ cmpo 7140   supp csupp 7813  seqωcseqom 8066   +o coa 8082   ·o comu 8083   ↑o coe 8084   ↑m cmap 8389   finSupp cfsupp 8817  OrdIsocoi 8957   CNF ccnf 9108 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pr 5311 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-ov 7141  df-oprab 7142  df-mpo 7143  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-seqom 8067  df-cnf 9109 This theorem is referenced by:  cantnfs  9113  cantnfval  9115  cantnff  9121  oemapso  9129  wemapwe  9144  oef1o  9145
 Copyright terms: Public domain W3C validator