MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfdm Structured version   Visualization version   GIF version

Theorem cantnfdm 9593
Description: The domain of the Cantor normal form function (in later lemmas we will use dom (𝐴 CNF 𝐵) to abbreviate "the set of finitely supported functions from 𝐵 to 𝐴"). (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnffval.s 𝑆 = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}
cantnffval.a (𝜑𝐴 ∈ On)
cantnffval.b (𝜑𝐵 ∈ On)
Assertion
Ref Expression
cantnfdm (𝜑 → dom (𝐴 CNF 𝐵) = 𝑆)
Distinct variable groups:   𝐴,𝑔   𝐵,𝑔
Allowed substitution hints:   𝜑(𝑔)   𝑆(𝑔)

Proof of Theorem cantnfdm
Dummy variables 𝑓 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnffval.s . . . 4 𝑆 = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}
2 cantnffval.a . . . 4 (𝜑𝐴 ∈ On)
3 cantnffval.b . . . 4 (𝜑𝐵 ∈ On)
41, 2, 3cantnffval 9592 . . 3 (𝜑 → (𝐴 CNF 𝐵) = (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
54dmeqd 5859 . 2 (𝜑 → dom (𝐴 CNF 𝐵) = dom (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
6 fvex 6853 . . . . 5 (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) ∈ V
76csbex 5261 . . . 4 OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) ∈ V
87rgenw 3048 . . 3 𝑓𝑆 OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) ∈ V
9 dmmptg 6203 . . 3 (∀𝑓𝑆 OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) ∈ V → dom (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )) = 𝑆)
108, 9ax-mp 5 . 2 dom (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )) = 𝑆
115, 10eqtrdi 2780 1 (𝜑 → dom (𝐴 CNF 𝐵) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  {crab 3402  Vcvv 3444  csb 3859  c0 4292   class class class wbr 5102  cmpt 5183   E cep 5530  dom cdm 5631  Oncon0 6320  cfv 6499  (class class class)co 7369  cmpo 7371   supp csupp 8116  seqωcseqom 8392   +o coa 8408   ·o comu 8409  o coe 8410  m cmap 8776   finSupp cfsupp 9288  OrdIsocoi 9438   CNF ccnf 9590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-seqom 8393  df-cnf 9591
This theorem is referenced by:  cantnfs  9595  cantnfval  9597  cantnff  9603  oemapso  9611  wemapwe  9626  oef1o  9627
  Copyright terms: Public domain W3C validator