| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cantnfdm | Structured version Visualization version GIF version | ||
| Description: The domain of the Cantor normal form function (in later lemmas we will use dom (𝐴 CNF 𝐵) to abbreviate "the set of finitely supported functions from 𝐵 to 𝐴"). (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
| Ref | Expression |
|---|---|
| cantnffval.s | ⊢ 𝑆 = {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅} |
| cantnffval.a | ⊢ (𝜑 → 𝐴 ∈ On) |
| cantnffval.b | ⊢ (𝜑 → 𝐵 ∈ On) |
| Ref | Expression |
|---|---|
| cantnfdm | ⊢ (𝜑 → dom (𝐴 CNF 𝐵) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnffval.s | . . . 4 ⊢ 𝑆 = {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅} | |
| 2 | cantnffval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ On) | |
| 3 | cantnffval.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ On) | |
| 4 | 1, 2, 3 | cantnffval 9592 | . . 3 ⊢ (𝜑 → (𝐴 CNF 𝐵) = (𝑓 ∈ 𝑆 ↦ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ))) |
| 5 | 4 | dmeqd 5859 | . 2 ⊢ (𝜑 → dom (𝐴 CNF 𝐵) = dom (𝑓 ∈ 𝑆 ↦ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ))) |
| 6 | fvex 6853 | . . . . 5 ⊢ (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ) ∈ V | |
| 7 | 6 | csbex 5261 | . . . 4 ⊢ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ) ∈ V |
| 8 | 7 | rgenw 3048 | . . 3 ⊢ ∀𝑓 ∈ 𝑆 ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ) ∈ V |
| 9 | dmmptg 6203 | . . 3 ⊢ (∀𝑓 ∈ 𝑆 ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ) ∈ V → dom (𝑓 ∈ 𝑆 ↦ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ)) = 𝑆) | |
| 10 | 8, 9 | ax-mp 5 | . 2 ⊢ dom (𝑓 ∈ 𝑆 ↦ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ)) = 𝑆 |
| 11 | 5, 10 | eqtrdi 2780 | 1 ⊢ (𝜑 → dom (𝐴 CNF 𝐵) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3402 Vcvv 3444 ⦋csb 3859 ∅c0 4292 class class class wbr 5102 ↦ cmpt 5183 E cep 5530 dom cdm 5631 Oncon0 6320 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 supp csupp 8116 seqωcseqom 8392 +o coa 8408 ·o comu 8409 ↑o coe 8410 ↑m cmap 8776 finSupp cfsupp 9288 OrdIsocoi 9438 CNF ccnf 9590 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-seqom 8393 df-cnf 9591 |
| This theorem is referenced by: cantnfs 9595 cantnfval 9597 cantnff 9603 oemapso 9611 wemapwe 9626 oef1o 9627 |
| Copyright terms: Public domain | W3C validator |