| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cantnfdm | Structured version Visualization version GIF version | ||
| Description: The domain of the Cantor normal form function (in later lemmas we will use dom (𝐴 CNF 𝐵) to abbreviate "the set of finitely supported functions from 𝐵 to 𝐴"). (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
| Ref | Expression |
|---|---|
| cantnffval.s | ⊢ 𝑆 = {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅} |
| cantnffval.a | ⊢ (𝜑 → 𝐴 ∈ On) |
| cantnffval.b | ⊢ (𝜑 → 𝐵 ∈ On) |
| Ref | Expression |
|---|---|
| cantnfdm | ⊢ (𝜑 → dom (𝐴 CNF 𝐵) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnffval.s | . . . 4 ⊢ 𝑆 = {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅} | |
| 2 | cantnffval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ On) | |
| 3 | cantnffval.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ On) | |
| 4 | 1, 2, 3 | cantnffval 9623 | . . 3 ⊢ (𝜑 → (𝐴 CNF 𝐵) = (𝑓 ∈ 𝑆 ↦ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ))) |
| 5 | 4 | dmeqd 5872 | . 2 ⊢ (𝜑 → dom (𝐴 CNF 𝐵) = dom (𝑓 ∈ 𝑆 ↦ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ))) |
| 6 | fvex 6874 | . . . . 5 ⊢ (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ) ∈ V | |
| 7 | 6 | csbex 5269 | . . . 4 ⊢ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ) ∈ V |
| 8 | 7 | rgenw 3049 | . . 3 ⊢ ∀𝑓 ∈ 𝑆 ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ) ∈ V |
| 9 | dmmptg 6218 | . . 3 ⊢ (∀𝑓 ∈ 𝑆 ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ) ∈ V → dom (𝑓 ∈ 𝑆 ↦ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ)) = 𝑆) | |
| 10 | 8, 9 | ax-mp 5 | . 2 ⊢ dom (𝑓 ∈ 𝑆 ↦ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ)) = 𝑆 |
| 11 | 5, 10 | eqtrdi 2781 | 1 ⊢ (𝜑 → dom (𝐴 CNF 𝐵) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 Vcvv 3450 ⦋csb 3865 ∅c0 4299 class class class wbr 5110 ↦ cmpt 5191 E cep 5540 dom cdm 5641 Oncon0 6335 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 supp csupp 8142 seqωcseqom 8418 +o coa 8434 ·o comu 8435 ↑o coe 8436 ↑m cmap 8802 finSupp cfsupp 9319 OrdIsocoi 9469 CNF ccnf 9621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-seqom 8419 df-cnf 9622 |
| This theorem is referenced by: cantnfs 9626 cantnfval 9628 cantnff 9634 oemapso 9642 wemapwe 9657 oef1o 9658 |
| Copyright terms: Public domain | W3C validator |