Step | Hyp | Ref
| Expression |
1 | | itgparts.b |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
2 | | cncff 23962 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ) → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵):(𝑋(,)𝑌)⟶ℂ) |
3 | 1, 2 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵):(𝑋(,)𝑌)⟶ℂ) |
4 | 3 | fvmptelrn 6969 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐵 ∈ ℂ) |
5 | | ioossicc 13094 |
. . . . . . 7
⊢ (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) |
6 | 5 | sseli 3913 |
. . . . . 6
⊢ (𝑥 ∈ (𝑋(,)𝑌) → 𝑥 ∈ (𝑋[,]𝑌)) |
7 | | itgparts.c |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ∈ ((𝑋[,]𝑌)–cn→ℂ)) |
8 | | cncff 23962 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ∈ ((𝑋[,]𝑌)–cn→ℂ) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶):(𝑋[,]𝑌)⟶ℂ) |
9 | 7, 8 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶):(𝑋[,]𝑌)⟶ℂ) |
10 | 9 | fvmptelrn 6969 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋[,]𝑌)) → 𝐶 ∈ ℂ) |
11 | 6, 10 | sylan2 592 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ ℂ) |
12 | 4, 11 | mulcld 10926 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → (𝐵 · 𝐶) ∈ ℂ) |
13 | | itgparts.bc |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐵 · 𝐶)) ∈
𝐿1) |
14 | 12, 13 | itgcl 24853 |
. . 3
⊢ (𝜑 → ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥 ∈ ℂ) |
15 | | itgparts.a |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℂ)) |
16 | | cncff 23962 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℂ) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶ℂ) |
17 | 15, 16 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶ℂ) |
18 | 17 | fvmptelrn 6969 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋[,]𝑌)) → 𝐴 ∈ ℂ) |
19 | 6, 18 | sylan2 592 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐴 ∈ ℂ) |
20 | | itgparts.d |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
21 | | cncff 23962 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ ((𝑋(,)𝑌)–cn→ℂ) → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷):(𝑋(,)𝑌)⟶ℂ) |
22 | 20, 21 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷):(𝑋(,)𝑌)⟶ℂ) |
23 | 22 | fvmptelrn 6969 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐷 ∈ ℂ) |
24 | 19, 23 | mulcld 10926 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → (𝐴 · 𝐷) ∈ ℂ) |
25 | | itgparts.ad |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐷)) ∈
𝐿1) |
26 | 24, 25 | itgcl 24853 |
. . 3
⊢ (𝜑 → ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥 ∈ ℂ) |
27 | 14, 26 | pncan2d 11264 |
. 2
⊢ (𝜑 → ((∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥 + ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥) = ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥) |
28 | 12, 13, 24, 25 | itgadd 24894 |
. . . 4
⊢ (𝜑 → ∫(𝑋(,)𝑌)((𝐵 · 𝐶) + (𝐴 · 𝐷)) d𝑥 = (∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥 + ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥)) |
29 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑥 = 𝑡 → ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) = ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑡)) |
30 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑡((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) |
31 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑥ℝ |
32 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑥
D |
33 | | nfmpt1 5178 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)) |
34 | 31, 32, 33 | nfov 7285 |
. . . . . . . 8
⊢
Ⅎ𝑥(ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))) |
35 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑡 |
36 | 34, 35 | nffv 6766 |
. . . . . . 7
⊢
Ⅎ𝑥((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑡) |
37 | 29, 30, 36 | cbvitg 24845 |
. . . . . 6
⊢
∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) d𝑥 = ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑡) d𝑡 |
38 | | itgparts.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ ℝ) |
39 | | itgparts.y |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ ℝ) |
40 | | itgparts.le |
. . . . . . 7
⊢ (𝜑 → 𝑋 ≤ 𝑌) |
41 | | ax-resscn 10859 |
. . . . . . . . . . 11
⊢ ℝ
⊆ ℂ |
42 | 41 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ⊆
ℂ) |
43 | | iccssre 13090 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋[,]𝑌) ⊆ ℝ) |
44 | 38, 39, 43 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋[,]𝑌) ⊆ ℝ) |
45 | 18, 10 | mulcld 10926 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋[,]𝑌)) → (𝐴 · 𝐶) ∈ ℂ) |
46 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
47 | 46 | tgioo2 23872 |
. . . . . . . . . 10
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
48 | | iccntr 23890 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) →
((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌)) = (𝑋(,)𝑌)) |
49 | 38, 39, 48 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌)) = (𝑋(,)𝑌)) |
50 | 42, 44, 45, 47, 46, 49 | dvmptntr 25040 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))) = (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐶)))) |
51 | | reelprrecn 10894 |
. . . . . . . . . . 11
⊢ ℝ
∈ {ℝ, ℂ} |
52 | 51 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
53 | 42, 44, 18, 47, 46, 49 | dvmptntr 25040 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴))) |
54 | | itgparts.da |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) |
55 | 53, 54 | eqtr3d 2780 |
. . . . . . . . . 10
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) |
56 | 42, 44, 10, 47, 46, 49 | dvmptntr 25040 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶)) = (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶))) |
57 | | itgparts.dc |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷)) |
58 | 56, 57 | eqtr3d 2780 |
. . . . . . . . . 10
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷)) |
59 | 52, 19, 4, 55, 11, 23, 58 | dvmptmul 25030 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐶))) = (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴)))) |
60 | 23, 19 | mulcomd 10927 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → (𝐷 · 𝐴) = (𝐴 · 𝐷)) |
61 | 60 | oveq2d 7271 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → ((𝐵 · 𝐶) + (𝐷 · 𝐴)) = ((𝐵 · 𝐶) + (𝐴 · 𝐷))) |
62 | 61 | mpteq2dva 5170 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))) = (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))) |
63 | 50, 59, 62 | 3eqtrd 2782 |
. . . . . . . 8
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))) = (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))) |
64 | 46 | addcn 23934 |
. . . . . . . . . 10
⊢ + ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
65 | 64 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → + ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
66 | | resmpt 5934 |
. . . . . . . . . . . 12
⊢ ((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶)) |
67 | 5, 66 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) |
68 | | rescncf 23966 |
. . . . . . . . . . . 12
⊢ ((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ∈ ((𝑋[,]𝑌)–cn→ℂ) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ))) |
69 | 5, 7, 68 | mpsyl 68 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
70 | 67, 69 | eqeltrrid 2844 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
71 | 1, 70 | mulcncf 24515 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐵 · 𝐶)) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
72 | | resmpt 5934 |
. . . . . . . . . . . 12
⊢ ((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴)) |
73 | 5, 72 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴) |
74 | | rescncf 23966 |
. . . . . . . . . . . 12
⊢ ((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℂ) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ))) |
75 | 5, 15, 74 | mpsyl 68 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
76 | 73, 75 | eqeltrrid 2844 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
77 | 76, 20 | mulcncf 24515 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐷)) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
78 | 46, 65, 71, 77 | cncfmpt2f 23984 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
79 | 63, 78 | eqeltrd 2839 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
80 | 12, 13, 24, 25 | ibladd 24890 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷))) ∈
𝐿1) |
81 | 63, 80 | eqeltrd 2839 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))) ∈
𝐿1) |
82 | 15, 7 | mulcncf 24515 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)) ∈ ((𝑋[,]𝑌)–cn→ℂ)) |
83 | 38, 39, 40, 79, 81, 82 | ftc2 25113 |
. . . . . 6
⊢ (𝜑 → ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑡) d𝑡 = (((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) − ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋))) |
84 | 37, 83 | syl5eq 2791 |
. . . . 5
⊢ (𝜑 → ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) d𝑥 = (((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) − ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋))) |
85 | 63 | fveq1d 6758 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) = ((𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))‘𝑥)) |
86 | 85 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) = ((𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))‘𝑥)) |
87 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝑥 ∈ (𝑋(,)𝑌)) |
88 | | ovex 7288 |
. . . . . . . 8
⊢ ((𝐵 · 𝐶) + (𝐴 · 𝐷)) ∈ V |
89 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷))) = (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷))) |
90 | 89 | fvmpt2 6868 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝑋(,)𝑌) ∧ ((𝐵 · 𝐶) + (𝐴 · 𝐷)) ∈ V) → ((𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))‘𝑥) = ((𝐵 · 𝐶) + (𝐴 · 𝐷))) |
91 | 87, 88, 90 | sylancl 585 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → ((𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))‘𝑥) = ((𝐵 · 𝐶) + (𝐴 · 𝐷))) |
92 | 86, 91 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) = ((𝐵 · 𝐶) + (𝐴 · 𝐷))) |
93 | 92 | itgeq2dv 24851 |
. . . . 5
⊢ (𝜑 → ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) d𝑥 = ∫(𝑋(,)𝑌)((𝐵 · 𝐶) + (𝐴 · 𝐷)) d𝑥) |
94 | 38 | rexrd 10956 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈
ℝ*) |
95 | 39 | rexrd 10956 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈
ℝ*) |
96 | | ubicc2 13126 |
. . . . . . . . 9
⊢ ((𝑋 ∈ ℝ*
∧ 𝑌 ∈
ℝ* ∧ 𝑋
≤ 𝑌) → 𝑌 ∈ (𝑋[,]𝑌)) |
97 | 94, 95, 40, 96 | syl3anc 1369 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ (𝑋[,]𝑌)) |
98 | | ovex 7288 |
. . . . . . . . 9
⊢ (𝐴 · 𝐶) ∈ V |
99 | 98 | csbex 5230 |
. . . . . . . 8
⊢
⦋𝑌 /
𝑥⦌(𝐴 · 𝐶) ∈ V |
100 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)) = (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)) |
101 | 100 | fvmpts 6860 |
. . . . . . . 8
⊢ ((𝑌 ∈ (𝑋[,]𝑌) ∧ ⦋𝑌 / 𝑥⦌(𝐴 · 𝐶) ∈ V) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) = ⦋𝑌 / 𝑥⦌(𝐴 · 𝐶)) |
102 | 97, 99, 101 | sylancl 585 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) = ⦋𝑌 / 𝑥⦌(𝐴 · 𝐶)) |
103 | | itgparts.f |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (𝐴 · 𝐶) = 𝐹) |
104 | 39, 103 | csbied 3866 |
. . . . . . 7
⊢ (𝜑 → ⦋𝑌 / 𝑥⦌(𝐴 · 𝐶) = 𝐹) |
105 | 102, 104 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) = 𝐹) |
106 | | lbicc2 13125 |
. . . . . . . . 9
⊢ ((𝑋 ∈ ℝ*
∧ 𝑌 ∈
ℝ* ∧ 𝑋
≤ 𝑌) → 𝑋 ∈ (𝑋[,]𝑌)) |
107 | 94, 95, 40, 106 | syl3anc 1369 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ (𝑋[,]𝑌)) |
108 | 98 | csbex 5230 |
. . . . . . . 8
⊢
⦋𝑋 /
𝑥⦌(𝐴 · 𝐶) ∈ V |
109 | 100 | fvmpts 6860 |
. . . . . . . 8
⊢ ((𝑋 ∈ (𝑋[,]𝑌) ∧ ⦋𝑋 / 𝑥⦌(𝐴 · 𝐶) ∈ V) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋) = ⦋𝑋 / 𝑥⦌(𝐴 · 𝐶)) |
110 | 107, 108,
109 | sylancl 585 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋) = ⦋𝑋 / 𝑥⦌(𝐴 · 𝐶)) |
111 | | itgparts.e |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐴 · 𝐶) = 𝐸) |
112 | 38, 111 | csbied 3866 |
. . . . . . 7
⊢ (𝜑 → ⦋𝑋 / 𝑥⦌(𝐴 · 𝐶) = 𝐸) |
113 | 110, 112 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋) = 𝐸) |
114 | 105, 113 | oveq12d 7273 |
. . . . 5
⊢ (𝜑 → (((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) − ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋)) = (𝐹 − 𝐸)) |
115 | 84, 93, 114 | 3eqtr3d 2786 |
. . . 4
⊢ (𝜑 → ∫(𝑋(,)𝑌)((𝐵 · 𝐶) + (𝐴 · 𝐷)) d𝑥 = (𝐹 − 𝐸)) |
116 | 28, 115 | eqtr3d 2780 |
. . 3
⊢ (𝜑 → (∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥 + ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥) = (𝐹 − 𝐸)) |
117 | 116 | oveq1d 7270 |
. 2
⊢ (𝜑 → ((∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥 + ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥) = ((𝐹 − 𝐸) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥)) |
118 | 27, 117 | eqtr3d 2780 |
1
⊢ (𝜑 → ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥 = ((𝐹 − 𝐸) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥)) |