MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgparts Structured version   Visualization version   GIF version

Theorem itgparts 25363
Description: Integration by parts. If 𝐵(𝑥) is the derivative of 𝐴(𝑥) and 𝐷(𝑥) is the derivative of 𝐶(𝑥), and 𝐸 = (𝐴 · 𝐵)(𝑋) and 𝐹 = (𝐴 · 𝐵)(𝑌), then under suitable integrability and differentiability assumptions, the integral of 𝐴 · 𝐷 from 𝑋 to 𝑌 is equal to 𝐹𝐸 minus the integral of 𝐵 · 𝐶. (Contributed by Mario Carneiro, 3-Sep-2014.)
Hypotheses
Ref Expression
itgparts.x (𝜑𝑋 ∈ ℝ)
itgparts.y (𝜑𝑌 ∈ ℝ)
itgparts.le (𝜑𝑋𝑌)
itgparts.a (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℂ))
itgparts.c (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ∈ ((𝑋[,]𝑌)–cn→ℂ))
itgparts.b (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ))
itgparts.d (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ ((𝑋(,)𝑌)–cn→ℂ))
itgparts.ad (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐷)) ∈ 𝐿1)
itgparts.bc (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐵 · 𝐶)) ∈ 𝐿1)
itgparts.da (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
itgparts.dc (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷))
itgparts.e ((𝜑𝑥 = 𝑋) → (𝐴 · 𝐶) = 𝐸)
itgparts.f ((𝜑𝑥 = 𝑌) → (𝐴 · 𝐶) = 𝐹)
Assertion
Ref Expression
itgparts (𝜑 → ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥 = ((𝐹𝐸) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑋   𝑥,𝑌   𝑥,𝐸   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem itgparts
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 itgparts.b . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ))
2 cncff 24208 . . . . . . 7 ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ) → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵):(𝑋(,)𝑌)⟶ℂ)
31, 2syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵):(𝑋(,)𝑌)⟶ℂ)
43fvmptelcdm 7057 . . . . 5 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐵 ∈ ℂ)
5 ioossicc 13304 . . . . . . 7 (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌)
65sseli 3938 . . . . . 6 (𝑥 ∈ (𝑋(,)𝑌) → 𝑥 ∈ (𝑋[,]𝑌))
7 itgparts.c . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ∈ ((𝑋[,]𝑌)–cn→ℂ))
8 cncff 24208 . . . . . . . 8 ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ∈ ((𝑋[,]𝑌)–cn→ℂ) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶):(𝑋[,]𝑌)⟶ℂ)
97, 8syl 17 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶):(𝑋[,]𝑌)⟶ℂ)
109fvmptelcdm 7057 . . . . . 6 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → 𝐶 ∈ ℂ)
116, 10sylan2 593 . . . . 5 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ ℂ)
124, 11mulcld 11133 . . . 4 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → (𝐵 · 𝐶) ∈ ℂ)
13 itgparts.bc . . . 4 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐵 · 𝐶)) ∈ 𝐿1)
1412, 13itgcl 25100 . . 3 (𝜑 → ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥 ∈ ℂ)
15 itgparts.a . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℂ))
16 cncff 24208 . . . . . . . 8 ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℂ) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶ℂ)
1715, 16syl 17 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶ℂ)
1817fvmptelcdm 7057 . . . . . 6 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → 𝐴 ∈ ℂ)
196, 18sylan2 593 . . . . 5 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐴 ∈ ℂ)
20 itgparts.d . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ ((𝑋(,)𝑌)–cn→ℂ))
21 cncff 24208 . . . . . . 7 ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ ((𝑋(,)𝑌)–cn→ℂ) → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷):(𝑋(,)𝑌)⟶ℂ)
2220, 21syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷):(𝑋(,)𝑌)⟶ℂ)
2322fvmptelcdm 7057 . . . . 5 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐷 ∈ ℂ)
2419, 23mulcld 11133 . . . 4 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → (𝐴 · 𝐷) ∈ ℂ)
25 itgparts.ad . . . 4 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐷)) ∈ 𝐿1)
2624, 25itgcl 25100 . . 3 (𝜑 → ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥 ∈ ℂ)
2714, 26pncan2d 11472 . 2 (𝜑 → ((∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥 + ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥) = ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥)
2812, 13, 24, 25itgadd 25141 . . . 4 (𝜑 → ∫(𝑋(,)𝑌)((𝐵 · 𝐶) + (𝐴 · 𝐷)) d𝑥 = (∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥 + ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥))
29 fveq2 6839 . . . . . . 7 (𝑥 = 𝑡 → ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) = ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑡))
30 nfcv 2905 . . . . . . 7 𝑡((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥)
31 nfcv 2905 . . . . . . . . 9 𝑥
32 nfcv 2905 . . . . . . . . 9 𝑥 D
33 nfmpt1 5211 . . . . . . . . 9 𝑥(𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))
3431, 32, 33nfov 7381 . . . . . . . 8 𝑥(ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))
35 nfcv 2905 . . . . . . . 8 𝑥𝑡
3634, 35nffv 6849 . . . . . . 7 𝑥((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑡)
3729, 30, 36cbvitg 25092 . . . . . 6 ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) d𝑥 = ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑡) d𝑡
38 itgparts.x . . . . . . 7 (𝜑𝑋 ∈ ℝ)
39 itgparts.y . . . . . . 7 (𝜑𝑌 ∈ ℝ)
40 itgparts.le . . . . . . 7 (𝜑𝑋𝑌)
41 ax-resscn 11066 . . . . . . . . . . 11 ℝ ⊆ ℂ
4241a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
43 iccssre 13300 . . . . . . . . . . 11 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋[,]𝑌) ⊆ ℝ)
4438, 39, 43syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
4518, 10mulcld 11133 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → (𝐴 · 𝐶) ∈ ℂ)
46 eqid 2737 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4746tgioo2 24118 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
48 iccntr 24136 . . . . . . . . . . 11 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌)) = (𝑋(,)𝑌))
4938, 39, 48syl2anc 584 . . . . . . . . . 10 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌)) = (𝑋(,)𝑌))
5042, 44, 45, 47, 46, 49dvmptntr 25287 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))) = (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐶))))
51 reelprrecn 11101 . . . . . . . . . . 11 ℝ ∈ {ℝ, ℂ}
5251a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ {ℝ, ℂ})
5342, 44, 18, 47, 46, 49dvmptntr 25287 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴)))
54 itgparts.da . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
5553, 54eqtr3d 2779 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
5642, 44, 10, 47, 46, 49dvmptntr 25287 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶)) = (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶)))
57 itgparts.dc . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷))
5856, 57eqtr3d 2779 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷))
5952, 19, 4, 55, 11, 23, 58dvmptmul 25277 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐶))) = (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))))
6023, 19mulcomd 11134 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → (𝐷 · 𝐴) = (𝐴 · 𝐷))
6160oveq2d 7367 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → ((𝐵 · 𝐶) + (𝐷 · 𝐴)) = ((𝐵 · 𝐶) + (𝐴 · 𝐷)))
6261mpteq2dva 5203 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))) = (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷))))
6350, 59, 623eqtrd 2781 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))) = (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷))))
6446addcn 24180 . . . . . . . . . 10 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
6564a1i 11 . . . . . . . . 9 (𝜑 → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
66 resmpt 5989 . . . . . . . . . . . 12 ((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶))
675, 66ax-mp 5 . . . . . . . . . . 11 ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶)
68 rescncf 24212 . . . . . . . . . . . 12 ((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ∈ ((𝑋[,]𝑌)–cn→ℂ) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ)))
695, 7, 68mpsyl 68 . . . . . . . . . . 11 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
7067, 69eqeltrrid 2843 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ ((𝑋(,)𝑌)–cn→ℂ))
711, 70mulcncf 24762 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐵 · 𝐶)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
72 resmpt 5989 . . . . . . . . . . . 12 ((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴))
735, 72ax-mp 5 . . . . . . . . . . 11 ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴)
74 rescncf 24212 . . . . . . . . . . . 12 ((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℂ) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ)))
755, 15, 74mpsyl 68 . . . . . . . . . . 11 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
7673, 75eqeltrrid 2843 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴) ∈ ((𝑋(,)𝑌)–cn→ℂ))
7776, 20mulcncf 24762 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐷)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
7846, 65, 71, 77cncfmpt2f 24230 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
7963, 78eqeltrd 2838 . . . . . . 7 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
8012, 13, 24, 25ibladd 25137 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷))) ∈ 𝐿1)
8163, 80eqeltrd 2838 . . . . . . 7 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))) ∈ 𝐿1)
8215, 7mulcncf 24762 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)) ∈ ((𝑋[,]𝑌)–cn→ℂ))
8338, 39, 40, 79, 81, 82ftc2 25360 . . . . . 6 (𝜑 → ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑡) d𝑡 = (((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) − ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋)))
8437, 83eqtrid 2789 . . . . 5 (𝜑 → ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) d𝑥 = (((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) − ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋)))
8563fveq1d 6841 . . . . . . . 8 (𝜑 → ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) = ((𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))‘𝑥))
8685adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) = ((𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))‘𝑥))
87 simpr 485 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝑥 ∈ (𝑋(,)𝑌))
88 ovex 7384 . . . . . . . 8 ((𝐵 · 𝐶) + (𝐴 · 𝐷)) ∈ V
89 eqid 2737 . . . . . . . . 9 (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷))) = (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))
9089fvmpt2 6956 . . . . . . . 8 ((𝑥 ∈ (𝑋(,)𝑌) ∧ ((𝐵 · 𝐶) + (𝐴 · 𝐷)) ∈ V) → ((𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))‘𝑥) = ((𝐵 · 𝐶) + (𝐴 · 𝐷)))
9187, 88, 90sylancl 586 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → ((𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))‘𝑥) = ((𝐵 · 𝐶) + (𝐴 · 𝐷)))
9286, 91eqtrd 2777 . . . . . 6 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) = ((𝐵 · 𝐶) + (𝐴 · 𝐷)))
9392itgeq2dv 25098 . . . . 5 (𝜑 → ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) d𝑥 = ∫(𝑋(,)𝑌)((𝐵 · 𝐶) + (𝐴 · 𝐷)) d𝑥)
9438rexrd 11163 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ*)
9539rexrd 11163 . . . . . . . . 9 (𝜑𝑌 ∈ ℝ*)
96 ubicc2 13336 . . . . . . . . 9 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*𝑋𝑌) → 𝑌 ∈ (𝑋[,]𝑌))
9794, 95, 40, 96syl3anc 1371 . . . . . . . 8 (𝜑𝑌 ∈ (𝑋[,]𝑌))
98 ovex 7384 . . . . . . . . 9 (𝐴 · 𝐶) ∈ V
9998csbex 5266 . . . . . . . 8 𝑌 / 𝑥(𝐴 · 𝐶) ∈ V
100 eqid 2737 . . . . . . . . 9 (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)) = (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))
101100fvmpts 6948 . . . . . . . 8 ((𝑌 ∈ (𝑋[,]𝑌) ∧ 𝑌 / 𝑥(𝐴 · 𝐶) ∈ V) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) = 𝑌 / 𝑥(𝐴 · 𝐶))
10297, 99, 101sylancl 586 . . . . . . 7 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) = 𝑌 / 𝑥(𝐴 · 𝐶))
103 itgparts.f . . . . . . . 8 ((𝜑𝑥 = 𝑌) → (𝐴 · 𝐶) = 𝐹)
10439, 103csbied 3891 . . . . . . 7 (𝜑𝑌 / 𝑥(𝐴 · 𝐶) = 𝐹)
105102, 104eqtrd 2777 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) = 𝐹)
106 lbicc2 13335 . . . . . . . . 9 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*𝑋𝑌) → 𝑋 ∈ (𝑋[,]𝑌))
10794, 95, 40, 106syl3anc 1371 . . . . . . . 8 (𝜑𝑋 ∈ (𝑋[,]𝑌))
10898csbex 5266 . . . . . . . 8 𝑋 / 𝑥(𝐴 · 𝐶) ∈ V
109100fvmpts 6948 . . . . . . . 8 ((𝑋 ∈ (𝑋[,]𝑌) ∧ 𝑋 / 𝑥(𝐴 · 𝐶) ∈ V) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋) = 𝑋 / 𝑥(𝐴 · 𝐶))
110107, 108, 109sylancl 586 . . . . . . 7 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋) = 𝑋 / 𝑥(𝐴 · 𝐶))
111 itgparts.e . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (𝐴 · 𝐶) = 𝐸)
11238, 111csbied 3891 . . . . . . 7 (𝜑𝑋 / 𝑥(𝐴 · 𝐶) = 𝐸)
113110, 112eqtrd 2777 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋) = 𝐸)
114105, 113oveq12d 7369 . . . . 5 (𝜑 → (((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) − ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋)) = (𝐹𝐸))
11584, 93, 1143eqtr3d 2785 . . . 4 (𝜑 → ∫(𝑋(,)𝑌)((𝐵 · 𝐶) + (𝐴 · 𝐷)) d𝑥 = (𝐹𝐸))
11628, 115eqtr3d 2779 . . 3 (𝜑 → (∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥 + ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥) = (𝐹𝐸))
117116oveq1d 7366 . 2 (𝜑 → ((∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥 + ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥) = ((𝐹𝐸) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥))
11827, 117eqtr3d 2779 1 (𝜑 → ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥 = ((𝐹𝐸) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3443  csb 3853  wss 3908  {cpr 4586   class class class wbr 5103  cmpt 5186  ran crn 5632  cres 5633  wf 6489  cfv 6493  (class class class)co 7351  cc 11007  cr 11008   + caddc 11012   · cmul 11014  *cxr 11146  cle 11148  cmin 11343  (,)cioo 13218  [,]cicc 13221  TopOpenctopn 17263  topGenctg 17279  fldccnfld 20749  intcnt 22320   Cn ccn 22527   ×t ctx 22863  cnccncf 24191  𝐿1cibl 24933  citg 24934   D cdv 25179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-inf2 9535  ax-cc 10329  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-symdif 4200  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-tp 4589  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-iin 4955  df-disj 5069  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-isom 6502  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-of 7609  df-ofr 7610  df-om 7795  df-1st 7913  df-2nd 7914  df-supp 8085  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-1o 8404  df-2o 8405  df-oadd 8408  df-omul 8409  df-er 8606  df-map 8725  df-pm 8726  df-ixp 8794  df-en 8842  df-dom 8843  df-sdom 8844  df-fin 8845  df-fsupp 9264  df-fi 9305  df-sup 9336  df-inf 9337  df-oi 9404  df-dju 9795  df-card 9833  df-acn 9836  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346  df-div 11771  df-nn 12112  df-2 12174  df-3 12175  df-4 12176  df-5 12177  df-6 12178  df-7 12179  df-8 12180  df-9 12181  df-n0 12372  df-z 12458  df-dec 12577  df-uz 12722  df-q 12828  df-rp 12870  df-xneg 12987  df-xadd 12988  df-xmul 12989  df-ioo 13222  df-ioc 13223  df-ico 13224  df-icc 13225  df-fz 13379  df-fzo 13522  df-fl 13651  df-mod 13729  df-seq 13861  df-exp 13922  df-hash 14185  df-cj 14944  df-re 14945  df-im 14946  df-sqrt 15080  df-abs 15081  df-clim 15330  df-rlim 15331  df-sum 15531  df-struct 16979  df-sets 16996  df-slot 17014  df-ndx 17026  df-base 17044  df-ress 17073  df-plusg 17106  df-mulr 17107  df-starv 17108  df-sca 17109  df-vsca 17110  df-ip 17111  df-tset 17112  df-ple 17113  df-ds 17115  df-unif 17116  df-hom 17117  df-cco 17118  df-rest 17264  df-topn 17265  df-0g 17283  df-gsum 17284  df-topgen 17285  df-pt 17286  df-prds 17289  df-xrs 17344  df-qtop 17349  df-imas 17350  df-xps 17352  df-mre 17426  df-mrc 17427  df-acs 17429  df-mgm 18457  df-sgrp 18506  df-mnd 18517  df-submnd 18562  df-mulg 18832  df-cntz 19056  df-cmn 19523  df-psmet 20741  df-xmet 20742  df-met 20743  df-bl 20744  df-mopn 20745  df-fbas 20746  df-fg 20747  df-cnfld 20750  df-top 22195  df-topon 22212  df-topsp 22234  df-bases 22248  df-cld 22322  df-ntr 22323  df-cls 22324  df-nei 22401  df-lp 22439  df-perf 22440  df-cn 22530  df-cnp 22531  df-haus 22618  df-cmp 22690  df-tx 22865  df-hmeo 23058  df-fil 23149  df-fm 23241  df-flim 23242  df-flf 23243  df-xms 23625  df-ms 23626  df-tms 23627  df-cncf 24193  df-ovol 24780  df-vol 24781  df-mbf 24935  df-itg1 24936  df-itg2 24937  df-ibl 24938  df-itg 24939  df-0p 24986  df-limc 25182  df-dv 25183
This theorem is referenced by:  lcmineqlem10  40433  itgsinexplem1  44096  fourierdlem39  44288
  Copyright terms: Public domain W3C validator