| Step | Hyp | Ref
| Expression |
| 1 | | itgparts.b |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
| 2 | | cncff 24919 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ) → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵):(𝑋(,)𝑌)⟶ℂ) |
| 3 | 1, 2 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵):(𝑋(,)𝑌)⟶ℂ) |
| 4 | 3 | fvmptelcdm 7133 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐵 ∈ ℂ) |
| 5 | | ioossicc 13473 |
. . . . . . 7
⊢ (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) |
| 6 | 5 | sseli 3979 |
. . . . . 6
⊢ (𝑥 ∈ (𝑋(,)𝑌) → 𝑥 ∈ (𝑋[,]𝑌)) |
| 7 | | itgparts.c |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ∈ ((𝑋[,]𝑌)–cn→ℂ)) |
| 8 | | cncff 24919 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ∈ ((𝑋[,]𝑌)–cn→ℂ) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶):(𝑋[,]𝑌)⟶ℂ) |
| 9 | 7, 8 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶):(𝑋[,]𝑌)⟶ℂ) |
| 10 | 9 | fvmptelcdm 7133 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋[,]𝑌)) → 𝐶 ∈ ℂ) |
| 11 | 6, 10 | sylan2 593 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ ℂ) |
| 12 | 4, 11 | mulcld 11281 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → (𝐵 · 𝐶) ∈ ℂ) |
| 13 | | itgparts.bc |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐵 · 𝐶)) ∈
𝐿1) |
| 14 | 12, 13 | itgcl 25819 |
. . 3
⊢ (𝜑 → ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥 ∈ ℂ) |
| 15 | | itgparts.a |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℂ)) |
| 16 | | cncff 24919 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℂ) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶ℂ) |
| 17 | 15, 16 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶ℂ) |
| 18 | 17 | fvmptelcdm 7133 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋[,]𝑌)) → 𝐴 ∈ ℂ) |
| 19 | 6, 18 | sylan2 593 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐴 ∈ ℂ) |
| 20 | | itgparts.d |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
| 21 | | cncff 24919 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ ((𝑋(,)𝑌)–cn→ℂ) → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷):(𝑋(,)𝑌)⟶ℂ) |
| 22 | 20, 21 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷):(𝑋(,)𝑌)⟶ℂ) |
| 23 | 22 | fvmptelcdm 7133 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐷 ∈ ℂ) |
| 24 | 19, 23 | mulcld 11281 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → (𝐴 · 𝐷) ∈ ℂ) |
| 25 | | itgparts.ad |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐷)) ∈
𝐿1) |
| 26 | 24, 25 | itgcl 25819 |
. . 3
⊢ (𝜑 → ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥 ∈ ℂ) |
| 27 | 14, 26 | pncan2d 11622 |
. 2
⊢ (𝜑 → ((∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥 + ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥) = ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥) |
| 28 | 12, 13, 24, 25 | itgadd 25860 |
. . . 4
⊢ (𝜑 → ∫(𝑋(,)𝑌)((𝐵 · 𝐶) + (𝐴 · 𝐷)) d𝑥 = (∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥 + ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥)) |
| 29 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑥 = 𝑡 → ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) = ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑡)) |
| 30 | | nfcv 2905 |
. . . . . . 7
⊢
Ⅎ𝑡((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) |
| 31 | | nfcv 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑥ℝ |
| 32 | | nfcv 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑥
D |
| 33 | | nfmpt1 5250 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)) |
| 34 | 31, 32, 33 | nfov 7461 |
. . . . . . . 8
⊢
Ⅎ𝑥(ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))) |
| 35 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑡 |
| 36 | 34, 35 | nffv 6916 |
. . . . . . 7
⊢
Ⅎ𝑥((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑡) |
| 37 | 29, 30, 36 | cbvitg 25811 |
. . . . . 6
⊢
∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) d𝑥 = ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑡) d𝑡 |
| 38 | | itgparts.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 39 | | itgparts.y |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ ℝ) |
| 40 | | itgparts.le |
. . . . . . 7
⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| 41 | | ax-resscn 11212 |
. . . . . . . . . . 11
⊢ ℝ
⊆ ℂ |
| 42 | 41 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ⊆
ℂ) |
| 43 | | iccssre 13469 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋[,]𝑌) ⊆ ℝ) |
| 44 | 38, 39, 43 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋[,]𝑌) ⊆ ℝ) |
| 45 | 18, 10 | mulcld 11281 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋[,]𝑌)) → (𝐴 · 𝐶) ∈ ℂ) |
| 46 | | tgioo4 24826 |
. . . . . . . . . 10
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 47 | | eqid 2737 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 48 | | iccntr 24843 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) →
((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌)) = (𝑋(,)𝑌)) |
| 49 | 38, 39, 48 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌)) = (𝑋(,)𝑌)) |
| 50 | 42, 44, 45, 46, 47, 49 | dvmptntr 26009 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))) = (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐶)))) |
| 51 | | reelprrecn 11247 |
. . . . . . . . . . 11
⊢ ℝ
∈ {ℝ, ℂ} |
| 52 | 51 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
| 53 | 42, 44, 18, 46, 47, 49 | dvmptntr 26009 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴))) |
| 54 | | itgparts.da |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) |
| 55 | 53, 54 | eqtr3d 2779 |
. . . . . . . . . 10
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) |
| 56 | 42, 44, 10, 46, 47, 49 | dvmptntr 26009 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶)) = (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶))) |
| 57 | | itgparts.dc |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷)) |
| 58 | 56, 57 | eqtr3d 2779 |
. . . . . . . . . 10
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷)) |
| 59 | 52, 19, 4, 55, 11, 23, 58 | dvmptmul 25999 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐶))) = (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴)))) |
| 60 | 23, 19 | mulcomd 11282 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → (𝐷 · 𝐴) = (𝐴 · 𝐷)) |
| 61 | 60 | oveq2d 7447 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → ((𝐵 · 𝐶) + (𝐷 · 𝐴)) = ((𝐵 · 𝐶) + (𝐴 · 𝐷))) |
| 62 | 61 | mpteq2dva 5242 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))) = (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))) |
| 63 | 50, 59, 62 | 3eqtrd 2781 |
. . . . . . . 8
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))) = (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))) |
| 64 | 47 | addcn 24887 |
. . . . . . . . . 10
⊢ + ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
| 65 | 64 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → + ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
| 66 | | resmpt 6055 |
. . . . . . . . . . . 12
⊢ ((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶)) |
| 67 | 5, 66 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) |
| 68 | | rescncf 24923 |
. . . . . . . . . . . 12
⊢ ((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ∈ ((𝑋[,]𝑌)–cn→ℂ) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ))) |
| 69 | 5, 7, 68 | mpsyl 68 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
| 70 | 67, 69 | eqeltrrid 2846 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
| 71 | 1, 70 | mulcncf 25480 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐵 · 𝐶)) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
| 72 | | resmpt 6055 |
. . . . . . . . . . . 12
⊢ ((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴)) |
| 73 | 5, 72 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴) |
| 74 | | rescncf 24923 |
. . . . . . . . . . . 12
⊢ ((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℂ) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ))) |
| 75 | 5, 15, 74 | mpsyl 68 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
| 76 | 73, 75 | eqeltrrid 2846 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
| 77 | 76, 20 | mulcncf 25480 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐷)) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
| 78 | 47, 65, 71, 77 | cncfmpt2f 24941 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
| 79 | 63, 78 | eqeltrd 2841 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
| 80 | 12, 13, 24, 25 | ibladd 25856 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷))) ∈
𝐿1) |
| 81 | 63, 80 | eqeltrd 2841 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))) ∈
𝐿1) |
| 82 | 15, 7 | mulcncf 25480 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)) ∈ ((𝑋[,]𝑌)–cn→ℂ)) |
| 83 | 38, 39, 40, 79, 81, 82 | ftc2 26085 |
. . . . . 6
⊢ (𝜑 → ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑡) d𝑡 = (((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) − ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋))) |
| 84 | 37, 83 | eqtrid 2789 |
. . . . 5
⊢ (𝜑 → ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) d𝑥 = (((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) − ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋))) |
| 85 | 63 | fveq1d 6908 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) = ((𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))‘𝑥)) |
| 86 | 85 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) = ((𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))‘𝑥)) |
| 87 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝑥 ∈ (𝑋(,)𝑌)) |
| 88 | | ovex 7464 |
. . . . . . . 8
⊢ ((𝐵 · 𝐶) + (𝐴 · 𝐷)) ∈ V |
| 89 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷))) = (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷))) |
| 90 | 89 | fvmpt2 7027 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝑋(,)𝑌) ∧ ((𝐵 · 𝐶) + (𝐴 · 𝐷)) ∈ V) → ((𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))‘𝑥) = ((𝐵 · 𝐶) + (𝐴 · 𝐷))) |
| 91 | 87, 88, 90 | sylancl 586 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → ((𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))‘𝑥) = ((𝐵 · 𝐶) + (𝐴 · 𝐷))) |
| 92 | 86, 91 | eqtrd 2777 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) = ((𝐵 · 𝐶) + (𝐴 · 𝐷))) |
| 93 | 92 | itgeq2dv 25817 |
. . . . 5
⊢ (𝜑 → ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) d𝑥 = ∫(𝑋(,)𝑌)((𝐵 · 𝐶) + (𝐴 · 𝐷)) d𝑥) |
| 94 | 38 | rexrd 11311 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈
ℝ*) |
| 95 | 39 | rexrd 11311 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈
ℝ*) |
| 96 | | ubicc2 13505 |
. . . . . . . . 9
⊢ ((𝑋 ∈ ℝ*
∧ 𝑌 ∈
ℝ* ∧ 𝑋
≤ 𝑌) → 𝑌 ∈ (𝑋[,]𝑌)) |
| 97 | 94, 95, 40, 96 | syl3anc 1373 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ (𝑋[,]𝑌)) |
| 98 | | ovex 7464 |
. . . . . . . . 9
⊢ (𝐴 · 𝐶) ∈ V |
| 99 | 98 | csbex 5311 |
. . . . . . . 8
⊢
⦋𝑌 /
𝑥⦌(𝐴 · 𝐶) ∈ V |
| 100 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)) = (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)) |
| 101 | 100 | fvmpts 7019 |
. . . . . . . 8
⊢ ((𝑌 ∈ (𝑋[,]𝑌) ∧ ⦋𝑌 / 𝑥⦌(𝐴 · 𝐶) ∈ V) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) = ⦋𝑌 / 𝑥⦌(𝐴 · 𝐶)) |
| 102 | 97, 99, 101 | sylancl 586 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) = ⦋𝑌 / 𝑥⦌(𝐴 · 𝐶)) |
| 103 | | itgparts.f |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (𝐴 · 𝐶) = 𝐹) |
| 104 | 39, 103 | csbied 3935 |
. . . . . . 7
⊢ (𝜑 → ⦋𝑌 / 𝑥⦌(𝐴 · 𝐶) = 𝐹) |
| 105 | 102, 104 | eqtrd 2777 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) = 𝐹) |
| 106 | | lbicc2 13504 |
. . . . . . . . 9
⊢ ((𝑋 ∈ ℝ*
∧ 𝑌 ∈
ℝ* ∧ 𝑋
≤ 𝑌) → 𝑋 ∈ (𝑋[,]𝑌)) |
| 107 | 94, 95, 40, 106 | syl3anc 1373 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ (𝑋[,]𝑌)) |
| 108 | 98 | csbex 5311 |
. . . . . . . 8
⊢
⦋𝑋 /
𝑥⦌(𝐴 · 𝐶) ∈ V |
| 109 | 100 | fvmpts 7019 |
. . . . . . . 8
⊢ ((𝑋 ∈ (𝑋[,]𝑌) ∧ ⦋𝑋 / 𝑥⦌(𝐴 · 𝐶) ∈ V) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋) = ⦋𝑋 / 𝑥⦌(𝐴 · 𝐶)) |
| 110 | 107, 108,
109 | sylancl 586 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋) = ⦋𝑋 / 𝑥⦌(𝐴 · 𝐶)) |
| 111 | | itgparts.e |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐴 · 𝐶) = 𝐸) |
| 112 | 38, 111 | csbied 3935 |
. . . . . . 7
⊢ (𝜑 → ⦋𝑋 / 𝑥⦌(𝐴 · 𝐶) = 𝐸) |
| 113 | 110, 112 | eqtrd 2777 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋) = 𝐸) |
| 114 | 105, 113 | oveq12d 7449 |
. . . . 5
⊢ (𝜑 → (((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) − ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋)) = (𝐹 − 𝐸)) |
| 115 | 84, 93, 114 | 3eqtr3d 2785 |
. . . 4
⊢ (𝜑 → ∫(𝑋(,)𝑌)((𝐵 · 𝐶) + (𝐴 · 𝐷)) d𝑥 = (𝐹 − 𝐸)) |
| 116 | 28, 115 | eqtr3d 2779 |
. . 3
⊢ (𝜑 → (∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥 + ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥) = (𝐹 − 𝐸)) |
| 117 | 116 | oveq1d 7446 |
. 2
⊢ (𝜑 → ((∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥 + ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥) = ((𝐹 − 𝐸) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥)) |
| 118 | 27, 117 | eqtr3d 2779 |
1
⊢ (𝜑 → ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥 = ((𝐹 − 𝐸) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥)) |