MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgparts Structured version   Visualization version   GIF version

Theorem itgparts 25987
Description: Integration by parts. If 𝐵(𝑥) is the derivative of 𝐴(𝑥) and 𝐷(𝑥) is the derivative of 𝐶(𝑥), and 𝐸 = (𝐴 · 𝐵)(𝑋) and 𝐹 = (𝐴 · 𝐵)(𝑌), then under suitable integrability and differentiability assumptions, the integral of 𝐴 · 𝐷 from 𝑋 to 𝑌 is equal to 𝐹𝐸 minus the integral of 𝐵 · 𝐶. (Contributed by Mario Carneiro, 3-Sep-2014.)
Hypotheses
Ref Expression
itgparts.x (𝜑𝑋 ∈ ℝ)
itgparts.y (𝜑𝑌 ∈ ℝ)
itgparts.le (𝜑𝑋𝑌)
itgparts.a (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℂ))
itgparts.c (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ∈ ((𝑋[,]𝑌)–cn→ℂ))
itgparts.b (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ))
itgparts.d (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ ((𝑋(,)𝑌)–cn→ℂ))
itgparts.ad (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐷)) ∈ 𝐿1)
itgparts.bc (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐵 · 𝐶)) ∈ 𝐿1)
itgparts.da (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
itgparts.dc (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷))
itgparts.e ((𝜑𝑥 = 𝑋) → (𝐴 · 𝐶) = 𝐸)
itgparts.f ((𝜑𝑥 = 𝑌) → (𝐴 · 𝐶) = 𝐹)
Assertion
Ref Expression
itgparts (𝜑 → ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥 = ((𝐹𝐸) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑋   𝑥,𝑌   𝑥,𝐸   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem itgparts
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 itgparts.b . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ))
2 cncff 24819 . . . . . . 7 ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ) → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵):(𝑋(,)𝑌)⟶ℂ)
31, 2syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵):(𝑋(,)𝑌)⟶ℂ)
43fvmptelcdm 7067 . . . . 5 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐵 ∈ ℂ)
5 ioossicc 13370 . . . . . . 7 (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌)
65sseli 3939 . . . . . 6 (𝑥 ∈ (𝑋(,)𝑌) → 𝑥 ∈ (𝑋[,]𝑌))
7 itgparts.c . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ∈ ((𝑋[,]𝑌)–cn→ℂ))
8 cncff 24819 . . . . . . . 8 ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ∈ ((𝑋[,]𝑌)–cn→ℂ) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶):(𝑋[,]𝑌)⟶ℂ)
97, 8syl 17 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶):(𝑋[,]𝑌)⟶ℂ)
109fvmptelcdm 7067 . . . . . 6 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → 𝐶 ∈ ℂ)
116, 10sylan2 593 . . . . 5 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ ℂ)
124, 11mulcld 11170 . . . 4 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → (𝐵 · 𝐶) ∈ ℂ)
13 itgparts.bc . . . 4 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐵 · 𝐶)) ∈ 𝐿1)
1412, 13itgcl 25718 . . 3 (𝜑 → ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥 ∈ ℂ)
15 itgparts.a . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℂ))
16 cncff 24819 . . . . . . . 8 ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℂ) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶ℂ)
1715, 16syl 17 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶ℂ)
1817fvmptelcdm 7067 . . . . . 6 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → 𝐴 ∈ ℂ)
196, 18sylan2 593 . . . . 5 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐴 ∈ ℂ)
20 itgparts.d . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ ((𝑋(,)𝑌)–cn→ℂ))
21 cncff 24819 . . . . . . 7 ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ ((𝑋(,)𝑌)–cn→ℂ) → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷):(𝑋(,)𝑌)⟶ℂ)
2220, 21syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷):(𝑋(,)𝑌)⟶ℂ)
2322fvmptelcdm 7067 . . . . 5 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐷 ∈ ℂ)
2419, 23mulcld 11170 . . . 4 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → (𝐴 · 𝐷) ∈ ℂ)
25 itgparts.ad . . . 4 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐷)) ∈ 𝐿1)
2624, 25itgcl 25718 . . 3 (𝜑 → ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥 ∈ ℂ)
2714, 26pncan2d 11511 . 2 (𝜑 → ((∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥 + ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥) = ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥)
2812, 13, 24, 25itgadd 25759 . . . 4 (𝜑 → ∫(𝑋(,)𝑌)((𝐵 · 𝐶) + (𝐴 · 𝐷)) d𝑥 = (∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥 + ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥))
29 fveq2 6840 . . . . . . 7 (𝑥 = 𝑡 → ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) = ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑡))
30 nfcv 2891 . . . . . . 7 𝑡((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥)
31 nfcv 2891 . . . . . . . . 9 𝑥
32 nfcv 2891 . . . . . . . . 9 𝑥 D
33 nfmpt1 5201 . . . . . . . . 9 𝑥(𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))
3431, 32, 33nfov 7399 . . . . . . . 8 𝑥(ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))
35 nfcv 2891 . . . . . . . 8 𝑥𝑡
3634, 35nffv 6850 . . . . . . 7 𝑥((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑡)
3729, 30, 36cbvitg 25710 . . . . . 6 ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) d𝑥 = ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑡) d𝑡
38 itgparts.x . . . . . . 7 (𝜑𝑋 ∈ ℝ)
39 itgparts.y . . . . . . 7 (𝜑𝑌 ∈ ℝ)
40 itgparts.le . . . . . . 7 (𝜑𝑋𝑌)
41 ax-resscn 11101 . . . . . . . . . . 11 ℝ ⊆ ℂ
4241a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
43 iccssre 13366 . . . . . . . . . . 11 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋[,]𝑌) ⊆ ℝ)
4438, 39, 43syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
4518, 10mulcld 11170 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → (𝐴 · 𝐶) ∈ ℂ)
46 tgioo4 24726 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
47 eqid 2729 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
48 iccntr 24743 . . . . . . . . . . 11 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌)) = (𝑋(,)𝑌))
4938, 39, 48syl2anc 584 . . . . . . . . . 10 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌)) = (𝑋(,)𝑌))
5042, 44, 45, 46, 47, 49dvmptntr 25908 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))) = (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐶))))
51 reelprrecn 11136 . . . . . . . . . . 11 ℝ ∈ {ℝ, ℂ}
5251a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ {ℝ, ℂ})
5342, 44, 18, 46, 47, 49dvmptntr 25908 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴)))
54 itgparts.da . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
5553, 54eqtr3d 2766 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
5642, 44, 10, 46, 47, 49dvmptntr 25908 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶)) = (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶)))
57 itgparts.dc . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷))
5856, 57eqtr3d 2766 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷))
5952, 19, 4, 55, 11, 23, 58dvmptmul 25898 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐶))) = (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))))
6023, 19mulcomd 11171 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → (𝐷 · 𝐴) = (𝐴 · 𝐷))
6160oveq2d 7385 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → ((𝐵 · 𝐶) + (𝐷 · 𝐴)) = ((𝐵 · 𝐶) + (𝐴 · 𝐷)))
6261mpteq2dva 5195 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))) = (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷))))
6350, 59, 623eqtrd 2768 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))) = (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷))))
6447addcn 24787 . . . . . . . . . 10 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
6564a1i 11 . . . . . . . . 9 (𝜑 → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
66 resmpt 5997 . . . . . . . . . . . 12 ((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶))
675, 66ax-mp 5 . . . . . . . . . . 11 ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶)
68 rescncf 24823 . . . . . . . . . . . 12 ((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ∈ ((𝑋[,]𝑌)–cn→ℂ) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ)))
695, 7, 68mpsyl 68 . . . . . . . . . . 11 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
7067, 69eqeltrrid 2833 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ ((𝑋(,)𝑌)–cn→ℂ))
711, 70mulcncf 25379 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐵 · 𝐶)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
72 resmpt 5997 . . . . . . . . . . . 12 ((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴))
735, 72ax-mp 5 . . . . . . . . . . 11 ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴)
74 rescncf 24823 . . . . . . . . . . . 12 ((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℂ) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ)))
755, 15, 74mpsyl 68 . . . . . . . . . . 11 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
7673, 75eqeltrrid 2833 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴) ∈ ((𝑋(,)𝑌)–cn→ℂ))
7776, 20mulcncf 25379 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐷)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
7847, 65, 71, 77cncfmpt2f 24841 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
7963, 78eqeltrd 2828 . . . . . . 7 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
8012, 13, 24, 25ibladd 25755 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷))) ∈ 𝐿1)
8163, 80eqeltrd 2828 . . . . . . 7 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))) ∈ 𝐿1)
8215, 7mulcncf 25379 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)) ∈ ((𝑋[,]𝑌)–cn→ℂ))
8338, 39, 40, 79, 81, 82ftc2 25984 . . . . . 6 (𝜑 → ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑡) d𝑡 = (((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) − ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋)))
8437, 83eqtrid 2776 . . . . 5 (𝜑 → ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) d𝑥 = (((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) − ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋)))
8563fveq1d 6842 . . . . . . . 8 (𝜑 → ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) = ((𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))‘𝑥))
8685adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) = ((𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))‘𝑥))
87 simpr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝑥 ∈ (𝑋(,)𝑌))
88 ovex 7402 . . . . . . . 8 ((𝐵 · 𝐶) + (𝐴 · 𝐷)) ∈ V
89 eqid 2729 . . . . . . . . 9 (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷))) = (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))
9089fvmpt2 6961 . . . . . . . 8 ((𝑥 ∈ (𝑋(,)𝑌) ∧ ((𝐵 · 𝐶) + (𝐴 · 𝐷)) ∈ V) → ((𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))‘𝑥) = ((𝐵 · 𝐶) + (𝐴 · 𝐷)))
9187, 88, 90sylancl 586 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → ((𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))‘𝑥) = ((𝐵 · 𝐶) + (𝐴 · 𝐷)))
9286, 91eqtrd 2764 . . . . . 6 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) = ((𝐵 · 𝐶) + (𝐴 · 𝐷)))
9392itgeq2dv 25716 . . . . 5 (𝜑 → ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) d𝑥 = ∫(𝑋(,)𝑌)((𝐵 · 𝐶) + (𝐴 · 𝐷)) d𝑥)
9438rexrd 11200 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ*)
9539rexrd 11200 . . . . . . . . 9 (𝜑𝑌 ∈ ℝ*)
96 ubicc2 13402 . . . . . . . . 9 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*𝑋𝑌) → 𝑌 ∈ (𝑋[,]𝑌))
9794, 95, 40, 96syl3anc 1373 . . . . . . . 8 (𝜑𝑌 ∈ (𝑋[,]𝑌))
98 ovex 7402 . . . . . . . . 9 (𝐴 · 𝐶) ∈ V
9998csbex 5261 . . . . . . . 8 𝑌 / 𝑥(𝐴 · 𝐶) ∈ V
100 eqid 2729 . . . . . . . . 9 (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)) = (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))
101100fvmpts 6953 . . . . . . . 8 ((𝑌 ∈ (𝑋[,]𝑌) ∧ 𝑌 / 𝑥(𝐴 · 𝐶) ∈ V) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) = 𝑌 / 𝑥(𝐴 · 𝐶))
10297, 99, 101sylancl 586 . . . . . . 7 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) = 𝑌 / 𝑥(𝐴 · 𝐶))
103 itgparts.f . . . . . . . 8 ((𝜑𝑥 = 𝑌) → (𝐴 · 𝐶) = 𝐹)
10439, 103csbied 3895 . . . . . . 7 (𝜑𝑌 / 𝑥(𝐴 · 𝐶) = 𝐹)
105102, 104eqtrd 2764 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) = 𝐹)
106 lbicc2 13401 . . . . . . . . 9 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*𝑋𝑌) → 𝑋 ∈ (𝑋[,]𝑌))
10794, 95, 40, 106syl3anc 1373 . . . . . . . 8 (𝜑𝑋 ∈ (𝑋[,]𝑌))
10898csbex 5261 . . . . . . . 8 𝑋 / 𝑥(𝐴 · 𝐶) ∈ V
109100fvmpts 6953 . . . . . . . 8 ((𝑋 ∈ (𝑋[,]𝑌) ∧ 𝑋 / 𝑥(𝐴 · 𝐶) ∈ V) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋) = 𝑋 / 𝑥(𝐴 · 𝐶))
110107, 108, 109sylancl 586 . . . . . . 7 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋) = 𝑋 / 𝑥(𝐴 · 𝐶))
111 itgparts.e . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (𝐴 · 𝐶) = 𝐸)
11238, 111csbied 3895 . . . . . . 7 (𝜑𝑋 / 𝑥(𝐴 · 𝐶) = 𝐸)
113110, 112eqtrd 2764 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋) = 𝐸)
114105, 113oveq12d 7387 . . . . 5 (𝜑 → (((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) − ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋)) = (𝐹𝐸))
11584, 93, 1143eqtr3d 2772 . . . 4 (𝜑 → ∫(𝑋(,)𝑌)((𝐵 · 𝐶) + (𝐴 · 𝐷)) d𝑥 = (𝐹𝐸))
11628, 115eqtr3d 2766 . . 3 (𝜑 → (∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥 + ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥) = (𝐹𝐸))
117116oveq1d 7384 . 2 (𝜑 → ((∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥 + ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥) = ((𝐹𝐸) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥))
11827, 117eqtr3d 2766 1 (𝜑 → ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥 = ((𝐹𝐸) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  csb 3859  wss 3911  {cpr 4587   class class class wbr 5102  cmpt 5183  ran crn 5632  cres 5633  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043   + caddc 11047   · cmul 11049  *cxr 11183  cle 11185  cmin 11381  (,)cioo 13282  [,]cicc 13285  TopOpenctopn 17360  topGenctg 17376  fldccnfld 21296  intcnt 22937   Cn ccn 23144   ×t ctx 23480  cnccncf 24802  𝐿1cibl 25551  citg 25552   D cdv 25797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-symdif 4212  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-cmp 23307  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-ovol 25398  df-vol 25399  df-mbf 25553  df-itg1 25554  df-itg2 25555  df-ibl 25556  df-itg 25557  df-0p 25604  df-limc 25800  df-dv 25801
This theorem is referenced by:  lcmineqlem10  42019  itgsinexplem1  45945  fourierdlem39  46137
  Copyright terms: Public domain W3C validator