MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgparts Structured version   Visualization version   GIF version

Theorem itgparts 24944
Description: Integration by parts. If 𝐵(𝑥) is the derivative of 𝐴(𝑥) and 𝐷(𝑥) is the derivative of 𝐶(𝑥), and 𝐸 = (𝐴 · 𝐵)(𝑋) and 𝐹 = (𝐴 · 𝐵)(𝑌), then under suitable integrability and differentiability assumptions, the integral of 𝐴 · 𝐷 from 𝑋 to 𝑌 is equal to 𝐹𝐸 minus the integral of 𝐵 · 𝐶. (Contributed by Mario Carneiro, 3-Sep-2014.)
Hypotheses
Ref Expression
itgparts.x (𝜑𝑋 ∈ ℝ)
itgparts.y (𝜑𝑌 ∈ ℝ)
itgparts.le (𝜑𝑋𝑌)
itgparts.a (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℂ))
itgparts.c (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ∈ ((𝑋[,]𝑌)–cn→ℂ))
itgparts.b (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ))
itgparts.d (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ ((𝑋(,)𝑌)–cn→ℂ))
itgparts.ad (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐷)) ∈ 𝐿1)
itgparts.bc (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐵 · 𝐶)) ∈ 𝐿1)
itgparts.da (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
itgparts.dc (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷))
itgparts.e ((𝜑𝑥 = 𝑋) → (𝐴 · 𝐶) = 𝐸)
itgparts.f ((𝜑𝑥 = 𝑌) → (𝐴 · 𝐶) = 𝐹)
Assertion
Ref Expression
itgparts (𝜑 → ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥 = ((𝐹𝐸) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑋   𝑥,𝑌   𝑥,𝐸   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem itgparts
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 itgparts.b . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ))
2 cncff 23790 . . . . . . 7 ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ) → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵):(𝑋(,)𝑌)⟶ℂ)
31, 2syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵):(𝑋(,)𝑌)⟶ℂ)
43fvmptelrn 6930 . . . . 5 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐵 ∈ ℂ)
5 ioossicc 13021 . . . . . . 7 (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌)
65sseli 3896 . . . . . 6 (𝑥 ∈ (𝑋(,)𝑌) → 𝑥 ∈ (𝑋[,]𝑌))
7 itgparts.c . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ∈ ((𝑋[,]𝑌)–cn→ℂ))
8 cncff 23790 . . . . . . . 8 ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ∈ ((𝑋[,]𝑌)–cn→ℂ) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶):(𝑋[,]𝑌)⟶ℂ)
97, 8syl 17 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶):(𝑋[,]𝑌)⟶ℂ)
109fvmptelrn 6930 . . . . . 6 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → 𝐶 ∈ ℂ)
116, 10sylan2 596 . . . . 5 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ ℂ)
124, 11mulcld 10853 . . . 4 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → (𝐵 · 𝐶) ∈ ℂ)
13 itgparts.bc . . . 4 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐵 · 𝐶)) ∈ 𝐿1)
1412, 13itgcl 24681 . . 3 (𝜑 → ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥 ∈ ℂ)
15 itgparts.a . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℂ))
16 cncff 23790 . . . . . . . 8 ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℂ) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶ℂ)
1715, 16syl 17 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶ℂ)
1817fvmptelrn 6930 . . . . . 6 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → 𝐴 ∈ ℂ)
196, 18sylan2 596 . . . . 5 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐴 ∈ ℂ)
20 itgparts.d . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ ((𝑋(,)𝑌)–cn→ℂ))
21 cncff 23790 . . . . . . 7 ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ ((𝑋(,)𝑌)–cn→ℂ) → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷):(𝑋(,)𝑌)⟶ℂ)
2220, 21syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷):(𝑋(,)𝑌)⟶ℂ)
2322fvmptelrn 6930 . . . . 5 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐷 ∈ ℂ)
2419, 23mulcld 10853 . . . 4 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → (𝐴 · 𝐷) ∈ ℂ)
25 itgparts.ad . . . 4 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐷)) ∈ 𝐿1)
2624, 25itgcl 24681 . . 3 (𝜑 → ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥 ∈ ℂ)
2714, 26pncan2d 11191 . 2 (𝜑 → ((∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥 + ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥) = ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥)
2812, 13, 24, 25itgadd 24722 . . . 4 (𝜑 → ∫(𝑋(,)𝑌)((𝐵 · 𝐶) + (𝐴 · 𝐷)) d𝑥 = (∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥 + ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥))
29 fveq2 6717 . . . . . . 7 (𝑥 = 𝑡 → ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) = ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑡))
30 nfcv 2904 . . . . . . 7 𝑡((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥)
31 nfcv 2904 . . . . . . . . 9 𝑥
32 nfcv 2904 . . . . . . . . 9 𝑥 D
33 nfmpt1 5153 . . . . . . . . 9 𝑥(𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))
3431, 32, 33nfov 7243 . . . . . . . 8 𝑥(ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))
35 nfcv 2904 . . . . . . . 8 𝑥𝑡
3634, 35nffv 6727 . . . . . . 7 𝑥((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑡)
3729, 30, 36cbvitg 24673 . . . . . 6 ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) d𝑥 = ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑡) d𝑡
38 itgparts.x . . . . . . 7 (𝜑𝑋 ∈ ℝ)
39 itgparts.y . . . . . . 7 (𝜑𝑌 ∈ ℝ)
40 itgparts.le . . . . . . 7 (𝜑𝑋𝑌)
41 ax-resscn 10786 . . . . . . . . . . 11 ℝ ⊆ ℂ
4241a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
43 iccssre 13017 . . . . . . . . . . 11 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋[,]𝑌) ⊆ ℝ)
4438, 39, 43syl2anc 587 . . . . . . . . . 10 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
4518, 10mulcld 10853 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → (𝐴 · 𝐶) ∈ ℂ)
46 eqid 2737 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4746tgioo2 23700 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
48 iccntr 23718 . . . . . . . . . . 11 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌)) = (𝑋(,)𝑌))
4938, 39, 48syl2anc 587 . . . . . . . . . 10 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌)) = (𝑋(,)𝑌))
5042, 44, 45, 47, 46, 49dvmptntr 24868 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))) = (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐶))))
51 reelprrecn 10821 . . . . . . . . . . 11 ℝ ∈ {ℝ, ℂ}
5251a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ {ℝ, ℂ})
5342, 44, 18, 47, 46, 49dvmptntr 24868 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴)))
54 itgparts.da . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
5553, 54eqtr3d 2779 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
5642, 44, 10, 47, 46, 49dvmptntr 24868 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶)) = (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶)))
57 itgparts.dc . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷))
5856, 57eqtr3d 2779 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷))
5952, 19, 4, 55, 11, 23, 58dvmptmul 24858 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐶))) = (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))))
6023, 19mulcomd 10854 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → (𝐷 · 𝐴) = (𝐴 · 𝐷))
6160oveq2d 7229 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → ((𝐵 · 𝐶) + (𝐷 · 𝐴)) = ((𝐵 · 𝐶) + (𝐴 · 𝐷)))
6261mpteq2dva 5150 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))) = (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷))))
6350, 59, 623eqtrd 2781 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))) = (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷))))
6446addcn 23762 . . . . . . . . . 10 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
6564a1i 11 . . . . . . . . 9 (𝜑 → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
66 resmpt 5905 . . . . . . . . . . . 12 ((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶))
675, 66ax-mp 5 . . . . . . . . . . 11 ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶)
68 rescncf 23794 . . . . . . . . . . . 12 ((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ∈ ((𝑋[,]𝑌)–cn→ℂ) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ)))
695, 7, 68mpsyl 68 . . . . . . . . . . 11 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
7067, 69eqeltrrid 2843 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ ((𝑋(,)𝑌)–cn→ℂ))
711, 70mulcncf 24343 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐵 · 𝐶)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
72 resmpt 5905 . . . . . . . . . . . 12 ((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴))
735, 72ax-mp 5 . . . . . . . . . . 11 ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴)
74 rescncf 23794 . . . . . . . . . . . 12 ((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℂ) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ)))
755, 15, 74mpsyl 68 . . . . . . . . . . 11 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
7673, 75eqeltrrid 2843 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐴) ∈ ((𝑋(,)𝑌)–cn→ℂ))
7776, 20mulcncf 24343 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐷)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
7846, 65, 71, 77cncfmpt2f 23812 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
7963, 78eqeltrd 2838 . . . . . . 7 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
8012, 13, 24, 25ibladd 24718 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷))) ∈ 𝐿1)
8163, 80eqeltrd 2838 . . . . . . 7 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))) ∈ 𝐿1)
8215, 7mulcncf 24343 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)) ∈ ((𝑋[,]𝑌)–cn→ℂ))
8338, 39, 40, 79, 81, 82ftc2 24941 . . . . . 6 (𝜑 → ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑡) d𝑡 = (((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) − ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋)))
8437, 83syl5eq 2790 . . . . 5 (𝜑 → ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) d𝑥 = (((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) − ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋)))
8563fveq1d 6719 . . . . . . . 8 (𝜑 → ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) = ((𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))‘𝑥))
8685adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) = ((𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))‘𝑥))
87 simpr 488 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝑥 ∈ (𝑋(,)𝑌))
88 ovex 7246 . . . . . . . 8 ((𝐵 · 𝐶) + (𝐴 · 𝐷)) ∈ V
89 eqid 2737 . . . . . . . . 9 (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷))) = (𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))
9089fvmpt2 6829 . . . . . . . 8 ((𝑥 ∈ (𝑋(,)𝑌) ∧ ((𝐵 · 𝐶) + (𝐴 · 𝐷)) ∈ V) → ((𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))‘𝑥) = ((𝐵 · 𝐶) + (𝐴 · 𝐷)))
9187, 88, 90sylancl 589 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → ((𝑥 ∈ (𝑋(,)𝑌) ↦ ((𝐵 · 𝐶) + (𝐴 · 𝐷)))‘𝑥) = ((𝐵 · 𝐶) + (𝐴 · 𝐷)))
9286, 91eqtrd 2777 . . . . . 6 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → ((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) = ((𝐵 · 𝐶) + (𝐴 · 𝐷)))
9392itgeq2dv 24679 . . . . 5 (𝜑 → ∫(𝑋(,)𝑌)((ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)))‘𝑥) d𝑥 = ∫(𝑋(,)𝑌)((𝐵 · 𝐶) + (𝐴 · 𝐷)) d𝑥)
9438rexrd 10883 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ*)
9539rexrd 10883 . . . . . . . . 9 (𝜑𝑌 ∈ ℝ*)
96 ubicc2 13053 . . . . . . . . 9 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*𝑋𝑌) → 𝑌 ∈ (𝑋[,]𝑌))
9794, 95, 40, 96syl3anc 1373 . . . . . . . 8 (𝜑𝑌 ∈ (𝑋[,]𝑌))
98 ovex 7246 . . . . . . . . 9 (𝐴 · 𝐶) ∈ V
9998csbex 5204 . . . . . . . 8 𝑌 / 𝑥(𝐴 · 𝐶) ∈ V
100 eqid 2737 . . . . . . . . 9 (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶)) = (𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))
101100fvmpts 6821 . . . . . . . 8 ((𝑌 ∈ (𝑋[,]𝑌) ∧ 𝑌 / 𝑥(𝐴 · 𝐶) ∈ V) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) = 𝑌 / 𝑥(𝐴 · 𝐶))
10297, 99, 101sylancl 589 . . . . . . 7 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) = 𝑌 / 𝑥(𝐴 · 𝐶))
103 itgparts.f . . . . . . . 8 ((𝜑𝑥 = 𝑌) → (𝐴 · 𝐶) = 𝐹)
10439, 103csbied 3849 . . . . . . 7 (𝜑𝑌 / 𝑥(𝐴 · 𝐶) = 𝐹)
105102, 104eqtrd 2777 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) = 𝐹)
106 lbicc2 13052 . . . . . . . . 9 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*𝑋𝑌) → 𝑋 ∈ (𝑋[,]𝑌))
10794, 95, 40, 106syl3anc 1373 . . . . . . . 8 (𝜑𝑋 ∈ (𝑋[,]𝑌))
10898csbex 5204 . . . . . . . 8 𝑋 / 𝑥(𝐴 · 𝐶) ∈ V
109100fvmpts 6821 . . . . . . . 8 ((𝑋 ∈ (𝑋[,]𝑌) ∧ 𝑋 / 𝑥(𝐴 · 𝐶) ∈ V) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋) = 𝑋 / 𝑥(𝐴 · 𝐶))
110107, 108, 109sylancl 589 . . . . . . 7 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋) = 𝑋 / 𝑥(𝐴 · 𝐶))
111 itgparts.e . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (𝐴 · 𝐶) = 𝐸)
11238, 111csbied 3849 . . . . . . 7 (𝜑𝑋 / 𝑥(𝐴 · 𝐶) = 𝐸)
113110, 112eqtrd 2777 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋) = 𝐸)
114105, 113oveq12d 7231 . . . . 5 (𝜑 → (((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑌) − ((𝑥 ∈ (𝑋[,]𝑌) ↦ (𝐴 · 𝐶))‘𝑋)) = (𝐹𝐸))
11584, 93, 1143eqtr3d 2785 . . . 4 (𝜑 → ∫(𝑋(,)𝑌)((𝐵 · 𝐶) + (𝐴 · 𝐷)) d𝑥 = (𝐹𝐸))
11628, 115eqtr3d 2779 . . 3 (𝜑 → (∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥 + ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥) = (𝐹𝐸))
117116oveq1d 7228 . 2 (𝜑 → ((∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥 + ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥) = ((𝐹𝐸) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥))
11827, 117eqtr3d 2779 1 (𝜑 → ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥 = ((𝐹𝐸) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  Vcvv 3408  csb 3811  wss 3866  {cpr 4543   class class class wbr 5053  cmpt 5135  ran crn 5552  cres 5553  wf 6376  cfv 6380  (class class class)co 7213  cc 10727  cr 10728   + caddc 10732   · cmul 10734  *cxr 10866  cle 10868  cmin 11062  (,)cioo 12935  [,]cicc 12938  TopOpenctopn 16926  topGenctg 16942  fldccnfld 20363  intcnt 21914   Cn ccn 22121   ×t ctx 22457  cnccncf 23773  𝐿1cibl 24514  citg 24515   D cdv 24760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cc 10049  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-symdif 4157  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-disj 5019  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-ofr 7470  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-oadd 8206  df-omul 8207  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-dju 9517  df-card 9555  df-acn 9558  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-rlim 15050  df-sum 15250  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-cmp 22284  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-ovol 24361  df-vol 24362  df-mbf 24516  df-itg1 24517  df-itg2 24518  df-ibl 24519  df-itg 24520  df-0p 24567  df-limc 24763  df-dv 24764
This theorem is referenced by:  lcmineqlem10  39780  itgsinexplem1  43170  fourierdlem39  43362
  Copyright terms: Public domain W3C validator