Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngchomrnghmresALTV | Structured version Visualization version GIF version |
Description: The value of the functionalized Hom-set operation in the category of non-unital rings (in a universe) as restriction of the non-unital ring homomorphisms. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngchomrnghmresALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
rngchomrnghmresALTV.b | ⊢ 𝐵 = (Rng ∩ 𝑈) |
rngchomrnghmresALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngchomrnghmresALTV.f | ⊢ 𝐹 = (Homf ‘𝐶) |
Ref | Expression |
---|---|
rngchomrnghmresALTV | ⊢ (𝜑 → 𝐹 = ( RngHomo ↾ (𝐵 × 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngchomrnghmresALTV.c | . . . . 5 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
2 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
3 | rngchomrnghmresALTV.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
4 | 1, 2, 3 | rngcbasALTV 45429 | . . . 4 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng)) |
5 | inss2 4160 | . . . 4 ⊢ (𝑈 ∩ Rng) ⊆ Rng | |
6 | 4, 5 | eqsstrdi 3971 | . . 3 ⊢ (𝜑 → (Base‘𝐶) ⊆ Rng) |
7 | resmpo 7372 | . . 3 ⊢ (((Base‘𝐶) ⊆ Rng ∧ (Base‘𝐶) ⊆ Rng) → ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHomo 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHomo 𝑦))) | |
8 | 6, 6, 7 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHomo 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHomo 𝑦))) |
9 | df-rnghomo 45333 | . . . . . 6 ⊢ RngHomo = (𝑟 ∈ Rng, 𝑠 ∈ Rng ↦ ⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))}) | |
10 | ovex 7288 | . . . . . . . . 9 ⊢ (𝑤 ↑m 𝑣) ∈ V | |
11 | 10 | rabex 5251 | . . . . . . . 8 ⊢ {𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} ∈ V |
12 | 11 | csbex 5230 | . . . . . . 7 ⊢ ⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} ∈ V |
13 | 12 | csbex 5230 | . . . . . 6 ⊢ ⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} ∈ V |
14 | 9, 13 | fnmpoi 7883 | . . . . 5 ⊢ RngHomo Fn (Rng × Rng) |
15 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → RngHomo Fn (Rng × Rng)) |
16 | fnov 7383 | . . . 4 ⊢ ( RngHomo Fn (Rng × Rng) ↔ RngHomo = (𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHomo 𝑦))) | |
17 | 15, 16 | sylib 217 | . . 3 ⊢ (𝜑 → RngHomo = (𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHomo 𝑦))) |
18 | incom 4131 | . . . . . 6 ⊢ (𝑈 ∩ Rng) = (Rng ∩ 𝑈) | |
19 | 18 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑈 ∩ Rng) = (Rng ∩ 𝑈)) |
20 | rngchomrnghmresALTV.b | . . . . . 6 ⊢ 𝐵 = (Rng ∩ 𝑈) | |
21 | 20 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) |
22 | 19, 4, 21 | 3eqtr4rd 2789 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
23 | 22 | sqxpeqd 5612 | . . 3 ⊢ (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐶) × (Base‘𝐶))) |
24 | 17, 23 | reseq12d 5881 | . 2 ⊢ (𝜑 → ( RngHomo ↾ (𝐵 × 𝐵)) = ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHomo 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
25 | rngchomrnghmresALTV.f | . . 3 ⊢ 𝐹 = (Homf ‘𝐶) | |
26 | 1, 2, 3, 25 | rngchomffvalALTV 45441 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHomo 𝑦))) |
27 | 8, 24, 26 | 3eqtr4rd 2789 | 1 ⊢ (𝜑 → 𝐹 = ( RngHomo ↾ (𝐵 × 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 ⦋csb 3828 ∩ cin 3882 ⊆ wss 3883 × cxp 5578 ↾ cres 5582 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ↑m cmap 8573 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 Homf chomf 17292 Rngcrng 45320 RngHomo crngh 45331 RngCatALTVcrngcALTV 45404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-hom 16912 df-cco 16913 df-homf 17296 df-rnghomo 45333 df-rngcALTV 45406 |
This theorem is referenced by: rhmsubcALTV 45554 |
Copyright terms: Public domain | W3C validator |