Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngchomrnghmresALTV Structured version   Visualization version   GIF version

Theorem rngchomrnghmresALTV 48267
Description: The value of the functionalized Hom-set operation in the category of non-unital rings (in a universe) as restriction of the non-unital ring homomorphisms. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
rngchomrnghmresALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngchomrnghmresALTV.b 𝐵 = (Rng ∩ 𝑈)
rngchomrnghmresALTV.u (𝜑𝑈𝑉)
rngchomrnghmresALTV.f 𝐹 = (Homf𝐶)
Assertion
Ref Expression
rngchomrnghmresALTV (𝜑𝐹 = ( RngHom ↾ (𝐵 × 𝐵)))

Proof of Theorem rngchomrnghmresALTV
Dummy variables 𝑥 𝑦 𝑠 𝑟 𝑣 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngchomrnghmresALTV.c . . . . 5 𝐶 = (RngCatALTV‘𝑈)
2 eqid 2729 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
3 rngchomrnghmresALTV.u . . . . 5 (𝜑𝑈𝑉)
41, 2, 3rngcbasALTV 48254 . . . 4 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng))
5 inss2 4201 . . . 4 (𝑈 ∩ Rng) ⊆ Rng
64, 5eqsstrdi 3991 . . 3 (𝜑 → (Base‘𝐶) ⊆ Rng)
7 resmpo 7509 . . 3 (((Base‘𝐶) ⊆ Rng ∧ (Base‘𝐶) ⊆ Rng) → ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHom 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHom 𝑦)))
86, 6, 7syl2anc 584 . 2 (𝜑 → ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHom 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHom 𝑦)))
9 df-rnghm 20345 . . . . . 6 RngHom = (𝑟 ∈ Rng, 𝑠 ∈ Rng ↦ (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))})
10 ovex 7420 . . . . . . . . 9 (𝑤m 𝑣) ∈ V
1110rabex 5294 . . . . . . . 8 {𝑓 ∈ (𝑤m 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} ∈ V
1211csbex 5266 . . . . . . 7 (Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} ∈ V
1312csbex 5266 . . . . . 6 (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} ∈ V
149, 13fnmpoi 8049 . . . . 5 RngHom Fn (Rng × Rng)
1514a1i 11 . . . 4 (𝜑 → RngHom Fn (Rng × Rng))
16 fnov 7520 . . . 4 ( RngHom Fn (Rng × Rng) ↔ RngHom = (𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHom 𝑦)))
1715, 16sylib 218 . . 3 (𝜑 → RngHom = (𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHom 𝑦)))
18 incom 4172 . . . . . 6 (𝑈 ∩ Rng) = (Rng ∩ 𝑈)
1918a1i 11 . . . . 5 (𝜑 → (𝑈 ∩ Rng) = (Rng ∩ 𝑈))
20 rngchomrnghmresALTV.b . . . . . 6 𝐵 = (Rng ∩ 𝑈)
2120a1i 11 . . . . 5 (𝜑𝐵 = (Rng ∩ 𝑈))
2219, 4, 213eqtr4rd 2775 . . . 4 (𝜑𝐵 = (Base‘𝐶))
2322sqxpeqd 5670 . . 3 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐶) × (Base‘𝐶)))
2417, 23reseq12d 5951 . 2 (𝜑 → ( RngHom ↾ (𝐵 × 𝐵)) = ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHom 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶))))
25 rngchomrnghmresALTV.f . . 3 𝐹 = (Homf𝐶)
261, 2, 3, 25rngchomffvalALTV 48266 . 2 (𝜑𝐹 = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHom 𝑦)))
278, 24, 263eqtr4rd 2775 1 (𝜑𝐹 = ( RngHom ↾ (𝐵 × 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405  csb 3862  cin 3913  wss 3914   × cxp 5636  cres 5640   Fn wfn 6506  cfv 6511  (class class class)co 7387  cmpo 7389  m cmap 8799  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  Homf chomf 17627  Rngcrng 20061   RngHom crnghm 20343  RngCatALTVcrngcALTV 48251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-hom 17244  df-cco 17245  df-homf 17631  df-rnghm 20345  df-rngcALTV 48252
This theorem is referenced by:  rhmsubcALTV  48273
  Copyright terms: Public domain W3C validator