Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngchomrnghmresALTV | Structured version Visualization version GIF version |
Description: The value of the functionalized Hom-set operation in the category of non-unital rings (in a universe) as restriction of the non-unital ring homomorphisms. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngchomrnghmresALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
rngchomrnghmresALTV.b | ⊢ 𝐵 = (Rng ∩ 𝑈) |
rngchomrnghmresALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngchomrnghmresALTV.f | ⊢ 𝐹 = (Homf ‘𝐶) |
Ref | Expression |
---|---|
rngchomrnghmresALTV | ⊢ (𝜑 → 𝐹 = ( RngHomo ↾ (𝐵 × 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngchomrnghmresALTV.c | . . . . 5 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
2 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
3 | rngchomrnghmresALTV.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
4 | 1, 2, 3 | rngcbasALTV 45900 | . . . 4 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng)) |
5 | inss2 4176 | . . . 4 ⊢ (𝑈 ∩ Rng) ⊆ Rng | |
6 | 4, 5 | eqsstrdi 3986 | . . 3 ⊢ (𝜑 → (Base‘𝐶) ⊆ Rng) |
7 | resmpo 7456 | . . 3 ⊢ (((Base‘𝐶) ⊆ Rng ∧ (Base‘𝐶) ⊆ Rng) → ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHomo 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHomo 𝑦))) | |
8 | 6, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHomo 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHomo 𝑦))) |
9 | df-rnghomo 45804 | . . . . . 6 ⊢ RngHomo = (𝑟 ∈ Rng, 𝑠 ∈ Rng ↦ ⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))}) | |
10 | ovex 7370 | . . . . . . . . 9 ⊢ (𝑤 ↑m 𝑣) ∈ V | |
11 | 10 | rabex 5276 | . . . . . . . 8 ⊢ {𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} ∈ V |
12 | 11 | csbex 5255 | . . . . . . 7 ⊢ ⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} ∈ V |
13 | 12 | csbex 5255 | . . . . . 6 ⊢ ⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} ∈ V |
14 | 9, 13 | fnmpoi 7978 | . . . . 5 ⊢ RngHomo Fn (Rng × Rng) |
15 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → RngHomo Fn (Rng × Rng)) |
16 | fnov 7467 | . . . 4 ⊢ ( RngHomo Fn (Rng × Rng) ↔ RngHomo = (𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHomo 𝑦))) | |
17 | 15, 16 | sylib 217 | . . 3 ⊢ (𝜑 → RngHomo = (𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHomo 𝑦))) |
18 | incom 4148 | . . . . . 6 ⊢ (𝑈 ∩ Rng) = (Rng ∩ 𝑈) | |
19 | 18 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑈 ∩ Rng) = (Rng ∩ 𝑈)) |
20 | rngchomrnghmresALTV.b | . . . . . 6 ⊢ 𝐵 = (Rng ∩ 𝑈) | |
21 | 20 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) |
22 | 19, 4, 21 | 3eqtr4rd 2787 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
23 | 22 | sqxpeqd 5652 | . . 3 ⊢ (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐶) × (Base‘𝐶))) |
24 | 17, 23 | reseq12d 5924 | . 2 ⊢ (𝜑 → ( RngHomo ↾ (𝐵 × 𝐵)) = ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHomo 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
25 | rngchomrnghmresALTV.f | . . 3 ⊢ 𝐹 = (Homf ‘𝐶) | |
26 | 1, 2, 3, 25 | rngchomffvalALTV 45912 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHomo 𝑦))) |
27 | 8, 24, 26 | 3eqtr4rd 2787 | 1 ⊢ (𝜑 → 𝐹 = ( RngHomo ↾ (𝐵 × 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 {crab 3403 ⦋csb 3843 ∩ cin 3897 ⊆ wss 3898 × cxp 5618 ↾ cres 5622 Fn wfn 6474 ‘cfv 6479 (class class class)co 7337 ∈ cmpo 7339 ↑m cmap 8686 Basecbs 17009 +gcplusg 17059 .rcmulr 17060 Homf chomf 17472 Rngcrng 45791 RngHomo crngh 45802 RngCatALTVcrngcALTV 45875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-z 12421 df-dec 12539 df-uz 12684 df-fz 13341 df-struct 16945 df-slot 16980 df-ndx 16992 df-base 17010 df-hom 17083 df-cco 17084 df-homf 17476 df-rnghomo 45804 df-rngcALTV 45877 |
This theorem is referenced by: rhmsubcALTV 46025 |
Copyright terms: Public domain | W3C validator |