Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngchomrnghmresALTV Structured version   Visualization version   GIF version

Theorem rngchomrnghmresALTV 45181
Description: The value of the functionalized Hom-set operation in the category of non-unital rings (in a universe) as restriction of the non-unital ring homomorphisms. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
rngchomrnghmresALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngchomrnghmresALTV.b 𝐵 = (Rng ∩ 𝑈)
rngchomrnghmresALTV.u (𝜑𝑈𝑉)
rngchomrnghmresALTV.f 𝐹 = (Homf𝐶)
Assertion
Ref Expression
rngchomrnghmresALTV (𝜑𝐹 = ( RngHomo ↾ (𝐵 × 𝐵)))

Proof of Theorem rngchomrnghmresALTV
Dummy variables 𝑥 𝑦 𝑠 𝑟 𝑣 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngchomrnghmresALTV.c . . . . 5 𝐶 = (RngCatALTV‘𝑈)
2 eqid 2734 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
3 rngchomrnghmresALTV.u . . . . 5 (𝜑𝑈𝑉)
41, 2, 3rngcbasALTV 45168 . . . 4 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng))
5 inss2 4134 . . . 4 (𝑈 ∩ Rng) ⊆ Rng
64, 5eqsstrdi 3945 . . 3 (𝜑 → (Base‘𝐶) ⊆ Rng)
7 resmpo 7319 . . 3 (((Base‘𝐶) ⊆ Rng ∧ (Base‘𝐶) ⊆ Rng) → ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHomo 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHomo 𝑦)))
86, 6, 7syl2anc 587 . 2 (𝜑 → ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHomo 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHomo 𝑦)))
9 df-rnghomo 45072 . . . . . 6 RngHomo = (𝑟 ∈ Rng, 𝑠 ∈ Rng ↦ (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))})
10 ovex 7235 . . . . . . . . 9 (𝑤m 𝑣) ∈ V
1110rabex 5214 . . . . . . . 8 {𝑓 ∈ (𝑤m 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} ∈ V
1211csbex 5193 . . . . . . 7 (Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} ∈ V
1312csbex 5193 . . . . . 6 (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} ∈ V
149, 13fnmpoi 7829 . . . . 5 RngHomo Fn (Rng × Rng)
1514a1i 11 . . . 4 (𝜑 → RngHomo Fn (Rng × Rng))
16 fnov 7330 . . . 4 ( RngHomo Fn (Rng × Rng) ↔ RngHomo = (𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHomo 𝑦)))
1715, 16sylib 221 . . 3 (𝜑 → RngHomo = (𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHomo 𝑦)))
18 incom 4105 . . . . . 6 (𝑈 ∩ Rng) = (Rng ∩ 𝑈)
1918a1i 11 . . . . 5 (𝜑 → (𝑈 ∩ Rng) = (Rng ∩ 𝑈))
20 rngchomrnghmresALTV.b . . . . . 6 𝐵 = (Rng ∩ 𝑈)
2120a1i 11 . . . . 5 (𝜑𝐵 = (Rng ∩ 𝑈))
2219, 4, 213eqtr4rd 2785 . . . 4 (𝜑𝐵 = (Base‘𝐶))
2322sqxpeqd 5572 . . 3 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐶) × (Base‘𝐶)))
2417, 23reseq12d 5841 . 2 (𝜑 → ( RngHomo ↾ (𝐵 × 𝐵)) = ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHomo 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶))))
25 rngchomrnghmresALTV.f . . 3 𝐹 = (Homf𝐶)
261, 2, 3, 25rngchomffvalALTV 45180 . 2 (𝜑𝐹 = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHomo 𝑦)))
278, 24, 263eqtr4rd 2785 1 (𝜑𝐹 = ( RngHomo ↾ (𝐵 × 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3054  {crab 3058  csb 3802  cin 3856  wss 3857   × cxp 5538  cres 5542   Fn wfn 6364  cfv 6369  (class class class)co 7202  cmpo 7204  m cmap 8497  Basecbs 16684  +gcplusg 16767  .rcmulr 16768  Homf chomf 17141  Rngcrng 45059   RngHomo crngh 45070  RngCatALTVcrngcALTV 45143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-dec 12277  df-uz 12422  df-fz 13079  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-hom 16791  df-cco 16792  df-homf 17145  df-rnghomo 45072  df-rngcALTV 45145
This theorem is referenced by:  rhmsubcALTV  45293
  Copyright terms: Public domain W3C validator