Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngchomrnghmresALTV Structured version   Visualization version   GIF version

Theorem rngchomrnghmresALTV 47453
Description: The value of the functionalized Hom-set operation in the category of non-unital rings (in a universe) as restriction of the non-unital ring homomorphisms. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
rngchomrnghmresALTV.c 𝐢 = (RngCatALTVβ€˜π‘ˆ)
rngchomrnghmresALTV.b 𝐡 = (Rng ∩ π‘ˆ)
rngchomrnghmresALTV.u (πœ‘ β†’ π‘ˆ ∈ 𝑉)
rngchomrnghmresALTV.f 𝐹 = (Homf β€˜πΆ)
Assertion
Ref Expression
rngchomrnghmresALTV (πœ‘ β†’ 𝐹 = ( RngHom β†Ύ (𝐡 Γ— 𝐡)))

Proof of Theorem rngchomrnghmresALTV
Dummy variables π‘₯ 𝑦 𝑠 π‘Ÿ 𝑣 𝑀 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngchomrnghmresALTV.c . . . . 5 𝐢 = (RngCatALTVβ€˜π‘ˆ)
2 eqid 2725 . . . . 5 (Baseβ€˜πΆ) = (Baseβ€˜πΆ)
3 rngchomrnghmresALTV.u . . . . 5 (πœ‘ β†’ π‘ˆ ∈ 𝑉)
41, 2, 3rngcbasALTV 47440 . . . 4 (πœ‘ β†’ (Baseβ€˜πΆ) = (π‘ˆ ∩ Rng))
5 inss2 4229 . . . 4 (π‘ˆ ∩ Rng) βŠ† Rng
64, 5eqsstrdi 4032 . . 3 (πœ‘ β†’ (Baseβ€˜πΆ) βŠ† Rng)
7 resmpo 7538 . . 3 (((Baseβ€˜πΆ) βŠ† Rng ∧ (Baseβ€˜πΆ) βŠ† Rng) β†’ ((π‘₯ ∈ Rng, 𝑦 ∈ Rng ↦ (π‘₯ RngHom 𝑦)) β†Ύ ((Baseβ€˜πΆ) Γ— (Baseβ€˜πΆ))) = (π‘₯ ∈ (Baseβ€˜πΆ), 𝑦 ∈ (Baseβ€˜πΆ) ↦ (π‘₯ RngHom 𝑦)))
86, 6, 7syl2anc 582 . 2 (πœ‘ β†’ ((π‘₯ ∈ Rng, 𝑦 ∈ Rng ↦ (π‘₯ RngHom 𝑦)) β†Ύ ((Baseβ€˜πΆ) Γ— (Baseβ€˜πΆ))) = (π‘₯ ∈ (Baseβ€˜πΆ), 𝑦 ∈ (Baseβ€˜πΆ) ↦ (π‘₯ RngHom 𝑦)))
9 df-rnghm 20379 . . . . . 6 RngHom = (π‘Ÿ ∈ Rng, 𝑠 ∈ Rng ↦ ⦋(Baseβ€˜π‘Ÿ) / π‘£β¦Œβ¦‹(Baseβ€˜π‘ ) / π‘€β¦Œ{𝑓 ∈ (𝑀 ↑m 𝑣) ∣ βˆ€π‘₯ ∈ 𝑣 βˆ€π‘¦ ∈ 𝑣 ((π‘“β€˜(π‘₯(+gβ€˜π‘Ÿ)𝑦)) = ((π‘“β€˜π‘₯)(+gβ€˜π‘ )(π‘“β€˜π‘¦)) ∧ (π‘“β€˜(π‘₯(.rβ€˜π‘Ÿ)𝑦)) = ((π‘“β€˜π‘₯)(.rβ€˜π‘ )(π‘“β€˜π‘¦)))})
10 ovex 7450 . . . . . . . . 9 (𝑀 ↑m 𝑣) ∈ V
1110rabex 5334 . . . . . . . 8 {𝑓 ∈ (𝑀 ↑m 𝑣) ∣ βˆ€π‘₯ ∈ 𝑣 βˆ€π‘¦ ∈ 𝑣 ((π‘“β€˜(π‘₯(+gβ€˜π‘Ÿ)𝑦)) = ((π‘“β€˜π‘₯)(+gβ€˜π‘ )(π‘“β€˜π‘¦)) ∧ (π‘“β€˜(π‘₯(.rβ€˜π‘Ÿ)𝑦)) = ((π‘“β€˜π‘₯)(.rβ€˜π‘ )(π‘“β€˜π‘¦)))} ∈ V
1211csbex 5311 . . . . . . 7 ⦋(Baseβ€˜π‘ ) / π‘€β¦Œ{𝑓 ∈ (𝑀 ↑m 𝑣) ∣ βˆ€π‘₯ ∈ 𝑣 βˆ€π‘¦ ∈ 𝑣 ((π‘“β€˜(π‘₯(+gβ€˜π‘Ÿ)𝑦)) = ((π‘“β€˜π‘₯)(+gβ€˜π‘ )(π‘“β€˜π‘¦)) ∧ (π‘“β€˜(π‘₯(.rβ€˜π‘Ÿ)𝑦)) = ((π‘“β€˜π‘₯)(.rβ€˜π‘ )(π‘“β€˜π‘¦)))} ∈ V
1312csbex 5311 . . . . . 6 ⦋(Baseβ€˜π‘Ÿ) / π‘£β¦Œβ¦‹(Baseβ€˜π‘ ) / π‘€β¦Œ{𝑓 ∈ (𝑀 ↑m 𝑣) ∣ βˆ€π‘₯ ∈ 𝑣 βˆ€π‘¦ ∈ 𝑣 ((π‘“β€˜(π‘₯(+gβ€˜π‘Ÿ)𝑦)) = ((π‘“β€˜π‘₯)(+gβ€˜π‘ )(π‘“β€˜π‘¦)) ∧ (π‘“β€˜(π‘₯(.rβ€˜π‘Ÿ)𝑦)) = ((π‘“β€˜π‘₯)(.rβ€˜π‘ )(π‘“β€˜π‘¦)))} ∈ V
149, 13fnmpoi 8073 . . . . 5 RngHom Fn (Rng Γ— Rng)
1514a1i 11 . . . 4 (πœ‘ β†’ RngHom Fn (Rng Γ— Rng))
16 fnov 7550 . . . 4 ( RngHom Fn (Rng Γ— Rng) ↔ RngHom = (π‘₯ ∈ Rng, 𝑦 ∈ Rng ↦ (π‘₯ RngHom 𝑦)))
1715, 16sylib 217 . . 3 (πœ‘ β†’ RngHom = (π‘₯ ∈ Rng, 𝑦 ∈ Rng ↦ (π‘₯ RngHom 𝑦)))
18 incom 4200 . . . . . 6 (π‘ˆ ∩ Rng) = (Rng ∩ π‘ˆ)
1918a1i 11 . . . . 5 (πœ‘ β†’ (π‘ˆ ∩ Rng) = (Rng ∩ π‘ˆ))
20 rngchomrnghmresALTV.b . . . . . 6 𝐡 = (Rng ∩ π‘ˆ)
2120a1i 11 . . . . 5 (πœ‘ β†’ 𝐡 = (Rng ∩ π‘ˆ))
2219, 4, 213eqtr4rd 2776 . . . 4 (πœ‘ β†’ 𝐡 = (Baseβ€˜πΆ))
2322sqxpeqd 5709 . . 3 (πœ‘ β†’ (𝐡 Γ— 𝐡) = ((Baseβ€˜πΆ) Γ— (Baseβ€˜πΆ)))
2417, 23reseq12d 5985 . 2 (πœ‘ β†’ ( RngHom β†Ύ (𝐡 Γ— 𝐡)) = ((π‘₯ ∈ Rng, 𝑦 ∈ Rng ↦ (π‘₯ RngHom 𝑦)) β†Ύ ((Baseβ€˜πΆ) Γ— (Baseβ€˜πΆ))))
25 rngchomrnghmresALTV.f . . 3 𝐹 = (Homf β€˜πΆ)
261, 2, 3, 25rngchomffvalALTV 47452 . 2 (πœ‘ β†’ 𝐹 = (π‘₯ ∈ (Baseβ€˜πΆ), 𝑦 ∈ (Baseβ€˜πΆ) ↦ (π‘₯ RngHom 𝑦)))
278, 24, 263eqtr4rd 2776 1 (πœ‘ β†’ 𝐹 = ( RngHom β†Ύ (𝐡 Γ— 𝐡)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  βˆ€wral 3051  {crab 3419  β¦‹csb 3890   ∩ cin 3944   βŠ† wss 3945   Γ— cxp 5675   β†Ύ cres 5679   Fn wfn 6542  β€˜cfv 6547  (class class class)co 7417   ∈ cmpo 7419   ↑m cmap 8843  Basecbs 17179  +gcplusg 17232  .rcmulr 17233  Homf chomf 17645  Rngcrng 20096   RngHom crnghm 20377  RngCatALTVcrngcALTV 47437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-fz 13517  df-struct 17115  df-slot 17150  df-ndx 17162  df-base 17180  df-hom 17256  df-cco 17257  df-homf 17649  df-rnghm 20379  df-rngcALTV 47438
This theorem is referenced by:  rhmsubcALTV  47459
  Copyright terms: Public domain W3C validator