Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngchomrnghmresALTV | Structured version Visualization version GIF version |
Description: The value of the functionalized Hom-set operation in the category of non-unital rings (in a universe) as restriction of the non-unital ring homomorphisms. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngchomrnghmresALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
rngchomrnghmresALTV.b | ⊢ 𝐵 = (Rng ∩ 𝑈) |
rngchomrnghmresALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngchomrnghmresALTV.f | ⊢ 𝐹 = (Homf ‘𝐶) |
Ref | Expression |
---|---|
rngchomrnghmresALTV | ⊢ (𝜑 → 𝐹 = ( RngHomo ↾ (𝐵 × 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngchomrnghmresALTV.c | . . . . 5 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
2 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
3 | rngchomrnghmresALTV.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
4 | 1, 2, 3 | rngcbasALTV 45541 | . . . 4 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng)) |
5 | inss2 4163 | . . . 4 ⊢ (𝑈 ∩ Rng) ⊆ Rng | |
6 | 4, 5 | eqsstrdi 3975 | . . 3 ⊢ (𝜑 → (Base‘𝐶) ⊆ Rng) |
7 | resmpo 7394 | . . 3 ⊢ (((Base‘𝐶) ⊆ Rng ∧ (Base‘𝐶) ⊆ Rng) → ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHomo 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHomo 𝑦))) | |
8 | 6, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHomo 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHomo 𝑦))) |
9 | df-rnghomo 45445 | . . . . . 6 ⊢ RngHomo = (𝑟 ∈ Rng, 𝑠 ∈ Rng ↦ ⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))}) | |
10 | ovex 7308 | . . . . . . . . 9 ⊢ (𝑤 ↑m 𝑣) ∈ V | |
11 | 10 | rabex 5256 | . . . . . . . 8 ⊢ {𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} ∈ V |
12 | 11 | csbex 5235 | . . . . . . 7 ⊢ ⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} ∈ V |
13 | 12 | csbex 5235 | . . . . . 6 ⊢ ⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} ∈ V |
14 | 9, 13 | fnmpoi 7910 | . . . . 5 ⊢ RngHomo Fn (Rng × Rng) |
15 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → RngHomo Fn (Rng × Rng)) |
16 | fnov 7405 | . . . 4 ⊢ ( RngHomo Fn (Rng × Rng) ↔ RngHomo = (𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHomo 𝑦))) | |
17 | 15, 16 | sylib 217 | . . 3 ⊢ (𝜑 → RngHomo = (𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHomo 𝑦))) |
18 | incom 4135 | . . . . . 6 ⊢ (𝑈 ∩ Rng) = (Rng ∩ 𝑈) | |
19 | 18 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑈 ∩ Rng) = (Rng ∩ 𝑈)) |
20 | rngchomrnghmresALTV.b | . . . . . 6 ⊢ 𝐵 = (Rng ∩ 𝑈) | |
21 | 20 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) |
22 | 19, 4, 21 | 3eqtr4rd 2789 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
23 | 22 | sqxpeqd 5621 | . . 3 ⊢ (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐶) × (Base‘𝐶))) |
24 | 17, 23 | reseq12d 5892 | . 2 ⊢ (𝜑 → ( RngHomo ↾ (𝐵 × 𝐵)) = ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHomo 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
25 | rngchomrnghmresALTV.f | . . 3 ⊢ 𝐹 = (Homf ‘𝐶) | |
26 | 1, 2, 3, 25 | rngchomffvalALTV 45553 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHomo 𝑦))) |
27 | 8, 24, 26 | 3eqtr4rd 2789 | 1 ⊢ (𝜑 → 𝐹 = ( RngHomo ↾ (𝐵 × 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 ⦋csb 3832 ∩ cin 3886 ⊆ wss 3887 × cxp 5587 ↾ cres 5591 Fn wfn 6428 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 ↑m cmap 8615 Basecbs 16912 +gcplusg 16962 .rcmulr 16963 Homf chomf 17375 Rngcrng 45432 RngHomo crngh 45443 RngCatALTVcrngcALTV 45516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-hom 16986 df-cco 16987 df-homf 17379 df-rnghomo 45445 df-rngcALTV 45518 |
This theorem is referenced by: rhmsubcALTV 45666 |
Copyright terms: Public domain | W3C validator |