Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngchomrnghmresALTV Structured version   Visualization version   GIF version

Theorem rngchomrnghmresALTV 48260
Description: The value of the functionalized Hom-set operation in the category of non-unital rings (in a universe) as restriction of the non-unital ring homomorphisms. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
rngchomrnghmresALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngchomrnghmresALTV.b 𝐵 = (Rng ∩ 𝑈)
rngchomrnghmresALTV.u (𝜑𝑈𝑉)
rngchomrnghmresALTV.f 𝐹 = (Homf𝐶)
Assertion
Ref Expression
rngchomrnghmresALTV (𝜑𝐹 = ( RngHom ↾ (𝐵 × 𝐵)))

Proof of Theorem rngchomrnghmresALTV
Dummy variables 𝑥 𝑦 𝑠 𝑟 𝑣 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngchomrnghmresALTV.c . . . . 5 𝐶 = (RngCatALTV‘𝑈)
2 eqid 2729 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
3 rngchomrnghmresALTV.u . . . . 5 (𝜑𝑈𝑉)
41, 2, 3rngcbasALTV 48247 . . . 4 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng))
5 inss2 4197 . . . 4 (𝑈 ∩ Rng) ⊆ Rng
64, 5eqsstrdi 3988 . . 3 (𝜑 → (Base‘𝐶) ⊆ Rng)
7 resmpo 7489 . . 3 (((Base‘𝐶) ⊆ Rng ∧ (Base‘𝐶) ⊆ Rng) → ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHom 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHom 𝑦)))
86, 6, 7syl2anc 584 . 2 (𝜑 → ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHom 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHom 𝑦)))
9 df-rnghm 20356 . . . . . 6 RngHom = (𝑟 ∈ Rng, 𝑠 ∈ Rng ↦ (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))})
10 ovex 7402 . . . . . . . . 9 (𝑤m 𝑣) ∈ V
1110rabex 5289 . . . . . . . 8 {𝑓 ∈ (𝑤m 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} ∈ V
1211csbex 5261 . . . . . . 7 (Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} ∈ V
1312csbex 5261 . . . . . 6 (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} ∈ V
149, 13fnmpoi 8028 . . . . 5 RngHom Fn (Rng × Rng)
1514a1i 11 . . . 4 (𝜑 → RngHom Fn (Rng × Rng))
16 fnov 7500 . . . 4 ( RngHom Fn (Rng × Rng) ↔ RngHom = (𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHom 𝑦)))
1715, 16sylib 218 . . 3 (𝜑 → RngHom = (𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHom 𝑦)))
18 incom 4168 . . . . . 6 (𝑈 ∩ Rng) = (Rng ∩ 𝑈)
1918a1i 11 . . . . 5 (𝜑 → (𝑈 ∩ Rng) = (Rng ∩ 𝑈))
20 rngchomrnghmresALTV.b . . . . . 6 𝐵 = (Rng ∩ 𝑈)
2120a1i 11 . . . . 5 (𝜑𝐵 = (Rng ∩ 𝑈))
2219, 4, 213eqtr4rd 2775 . . . 4 (𝜑𝐵 = (Base‘𝐶))
2322sqxpeqd 5663 . . 3 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐶) × (Base‘𝐶)))
2417, 23reseq12d 5940 . 2 (𝜑 → ( RngHom ↾ (𝐵 × 𝐵)) = ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHom 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶))))
25 rngchomrnghmresALTV.f . . 3 𝐹 = (Homf𝐶)
261, 2, 3, 25rngchomffvalALTV 48259 . 2 (𝜑𝐹 = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHom 𝑦)))
278, 24, 263eqtr4rd 2775 1 (𝜑𝐹 = ( RngHom ↾ (𝐵 × 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3402  csb 3859  cin 3910  wss 3911   × cxp 5629  cres 5633   Fn wfn 6494  cfv 6499  (class class class)co 7369  cmpo 7371  m cmap 8776  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  Homf chomf 17607  Rngcrng 20072   RngHom crnghm 20354  RngCatALTVcrngcALTV 48244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-hom 17220  df-cco 17221  df-homf 17611  df-rnghm 20356  df-rngcALTV 48245
This theorem is referenced by:  rhmsubcALTV  48266
  Copyright terms: Public domain W3C validator