![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngchomrnghmresALTV | Structured version Visualization version GIF version |
Description: The value of the functionalized Hom-set operation in the category of non-unital rings (in a universe) as restriction of the non-unital ring homomorphisms. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngchomrnghmresALTV.c | β’ πΆ = (RngCatALTVβπ) |
rngchomrnghmresALTV.b | β’ π΅ = (Rng β© π) |
rngchomrnghmresALTV.u | β’ (π β π β π) |
rngchomrnghmresALTV.f | β’ πΉ = (Homf βπΆ) |
Ref | Expression |
---|---|
rngchomrnghmresALTV | β’ (π β πΉ = ( RngHom βΎ (π΅ Γ π΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngchomrnghmresALTV.c | . . . . 5 β’ πΆ = (RngCatALTVβπ) | |
2 | eqid 2725 | . . . . 5 β’ (BaseβπΆ) = (BaseβπΆ) | |
3 | rngchomrnghmresALTV.u | . . . . 5 β’ (π β π β π) | |
4 | 1, 2, 3 | rngcbasALTV 47440 | . . . 4 β’ (π β (BaseβπΆ) = (π β© Rng)) |
5 | inss2 4229 | . . . 4 β’ (π β© Rng) β Rng | |
6 | 4, 5 | eqsstrdi 4032 | . . 3 β’ (π β (BaseβπΆ) β Rng) |
7 | resmpo 7538 | . . 3 β’ (((BaseβπΆ) β Rng β§ (BaseβπΆ) β Rng) β ((π₯ β Rng, π¦ β Rng β¦ (π₯ RngHom π¦)) βΎ ((BaseβπΆ) Γ (BaseβπΆ))) = (π₯ β (BaseβπΆ), π¦ β (BaseβπΆ) β¦ (π₯ RngHom π¦))) | |
8 | 6, 6, 7 | syl2anc 582 | . 2 β’ (π β ((π₯ β Rng, π¦ β Rng β¦ (π₯ RngHom π¦)) βΎ ((BaseβπΆ) Γ (BaseβπΆ))) = (π₯ β (BaseβπΆ), π¦ β (BaseβπΆ) β¦ (π₯ RngHom π¦))) |
9 | df-rnghm 20379 | . . . . . 6 β’ RngHom = (π β Rng, π β Rng β¦ β¦(Baseβπ) / π£β¦β¦(Baseβπ ) / π€β¦{π β (π€ βm π£) β£ βπ₯ β π£ βπ¦ β π£ ((πβ(π₯(+gβπ)π¦)) = ((πβπ₯)(+gβπ )(πβπ¦)) β§ (πβ(π₯(.rβπ)π¦)) = ((πβπ₯)(.rβπ )(πβπ¦)))}) | |
10 | ovex 7450 | . . . . . . . . 9 β’ (π€ βm π£) β V | |
11 | 10 | rabex 5334 | . . . . . . . 8 β’ {π β (π€ βm π£) β£ βπ₯ β π£ βπ¦ β π£ ((πβ(π₯(+gβπ)π¦)) = ((πβπ₯)(+gβπ )(πβπ¦)) β§ (πβ(π₯(.rβπ)π¦)) = ((πβπ₯)(.rβπ )(πβπ¦)))} β V |
12 | 11 | csbex 5311 | . . . . . . 7 β’ β¦(Baseβπ ) / π€β¦{π β (π€ βm π£) β£ βπ₯ β π£ βπ¦ β π£ ((πβ(π₯(+gβπ)π¦)) = ((πβπ₯)(+gβπ )(πβπ¦)) β§ (πβ(π₯(.rβπ)π¦)) = ((πβπ₯)(.rβπ )(πβπ¦)))} β V |
13 | 12 | csbex 5311 | . . . . . 6 β’ β¦(Baseβπ) / π£β¦β¦(Baseβπ ) / π€β¦{π β (π€ βm π£) β£ βπ₯ β π£ βπ¦ β π£ ((πβ(π₯(+gβπ)π¦)) = ((πβπ₯)(+gβπ )(πβπ¦)) β§ (πβ(π₯(.rβπ)π¦)) = ((πβπ₯)(.rβπ )(πβπ¦)))} β V |
14 | 9, 13 | fnmpoi 8073 | . . . . 5 β’ RngHom Fn (Rng Γ Rng) |
15 | 14 | a1i 11 | . . . 4 β’ (π β RngHom Fn (Rng Γ Rng)) |
16 | fnov 7550 | . . . 4 β’ ( RngHom Fn (Rng Γ Rng) β RngHom = (π₯ β Rng, π¦ β Rng β¦ (π₯ RngHom π¦))) | |
17 | 15, 16 | sylib 217 | . . 3 β’ (π β RngHom = (π₯ β Rng, π¦ β Rng β¦ (π₯ RngHom π¦))) |
18 | incom 4200 | . . . . . 6 β’ (π β© Rng) = (Rng β© π) | |
19 | 18 | a1i 11 | . . . . 5 β’ (π β (π β© Rng) = (Rng β© π)) |
20 | rngchomrnghmresALTV.b | . . . . . 6 β’ π΅ = (Rng β© π) | |
21 | 20 | a1i 11 | . . . . 5 β’ (π β π΅ = (Rng β© π)) |
22 | 19, 4, 21 | 3eqtr4rd 2776 | . . . 4 β’ (π β π΅ = (BaseβπΆ)) |
23 | 22 | sqxpeqd 5709 | . . 3 β’ (π β (π΅ Γ π΅) = ((BaseβπΆ) Γ (BaseβπΆ))) |
24 | 17, 23 | reseq12d 5985 | . 2 β’ (π β ( RngHom βΎ (π΅ Γ π΅)) = ((π₯ β Rng, π¦ β Rng β¦ (π₯ RngHom π¦)) βΎ ((BaseβπΆ) Γ (BaseβπΆ)))) |
25 | rngchomrnghmresALTV.f | . . 3 β’ πΉ = (Homf βπΆ) | |
26 | 1, 2, 3, 25 | rngchomffvalALTV 47452 | . 2 β’ (π β πΉ = (π₯ β (BaseβπΆ), π¦ β (BaseβπΆ) β¦ (π₯ RngHom π¦))) |
27 | 8, 24, 26 | 3eqtr4rd 2776 | 1 β’ (π β πΉ = ( RngHom βΎ (π΅ Γ π΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 βwral 3051 {crab 3419 β¦csb 3890 β© cin 3944 β wss 3945 Γ cxp 5675 βΎ cres 5679 Fn wfn 6542 βcfv 6547 (class class class)co 7417 β cmpo 7419 βm cmap 8843 Basecbs 17179 +gcplusg 17232 .rcmulr 17233 Homf chomf 17645 Rngcrng 20096 RngHom crnghm 20377 RngCatALTVcrngcALTV 47437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-fz 13517 df-struct 17115 df-slot 17150 df-ndx 17162 df-base 17180 df-hom 17256 df-cco 17257 df-homf 17649 df-rnghm 20379 df-rngcALTV 47438 |
This theorem is referenced by: rhmsubcALTV 47459 |
Copyright terms: Public domain | W3C validator |