| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngchomrnghmresALTV | Structured version Visualization version GIF version | ||
| Description: The value of the functionalized Hom-set operation in the category of non-unital rings (in a universe) as restriction of the non-unital ring homomorphisms. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rngchomrnghmresALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
| rngchomrnghmresALTV.b | ⊢ 𝐵 = (Rng ∩ 𝑈) |
| rngchomrnghmresALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rngchomrnghmresALTV.f | ⊢ 𝐹 = (Homf ‘𝐶) |
| Ref | Expression |
|---|---|
| rngchomrnghmresALTV | ⊢ (𝜑 → 𝐹 = ( RngHom ↾ (𝐵 × 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngchomrnghmresALTV.c | . . . . 5 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | rngchomrnghmresALTV.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 4 | 1, 2, 3 | rngcbasALTV 48247 | . . . 4 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng)) |
| 5 | inss2 4197 | . . . 4 ⊢ (𝑈 ∩ Rng) ⊆ Rng | |
| 6 | 4, 5 | eqsstrdi 3988 | . . 3 ⊢ (𝜑 → (Base‘𝐶) ⊆ Rng) |
| 7 | resmpo 7489 | . . 3 ⊢ (((Base‘𝐶) ⊆ Rng ∧ (Base‘𝐶) ⊆ Rng) → ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHom 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHom 𝑦))) | |
| 8 | 6, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHom 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHom 𝑦))) |
| 9 | df-rnghm 20356 | . . . . . 6 ⊢ RngHom = (𝑟 ∈ Rng, 𝑠 ∈ Rng ↦ ⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))}) | |
| 10 | ovex 7402 | . . . . . . . . 9 ⊢ (𝑤 ↑m 𝑣) ∈ V | |
| 11 | 10 | rabex 5289 | . . . . . . . 8 ⊢ {𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} ∈ V |
| 12 | 11 | csbex 5261 | . . . . . . 7 ⊢ ⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} ∈ V |
| 13 | 12 | csbex 5261 | . . . . . 6 ⊢ ⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} ∈ V |
| 14 | 9, 13 | fnmpoi 8028 | . . . . 5 ⊢ RngHom Fn (Rng × Rng) |
| 15 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → RngHom Fn (Rng × Rng)) |
| 16 | fnov 7500 | . . . 4 ⊢ ( RngHom Fn (Rng × Rng) ↔ RngHom = (𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHom 𝑦))) | |
| 17 | 15, 16 | sylib 218 | . . 3 ⊢ (𝜑 → RngHom = (𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHom 𝑦))) |
| 18 | incom 4168 | . . . . . 6 ⊢ (𝑈 ∩ Rng) = (Rng ∩ 𝑈) | |
| 19 | 18 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑈 ∩ Rng) = (Rng ∩ 𝑈)) |
| 20 | rngchomrnghmresALTV.b | . . . . . 6 ⊢ 𝐵 = (Rng ∩ 𝑈) | |
| 21 | 20 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) |
| 22 | 19, 4, 21 | 3eqtr4rd 2775 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
| 23 | 22 | sqxpeqd 5663 | . . 3 ⊢ (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐶) × (Base‘𝐶))) |
| 24 | 17, 23 | reseq12d 5940 | . 2 ⊢ (𝜑 → ( RngHom ↾ (𝐵 × 𝐵)) = ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHom 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
| 25 | rngchomrnghmresALTV.f | . . 3 ⊢ 𝐹 = (Homf ‘𝐶) | |
| 26 | 1, 2, 3, 25 | rngchomffvalALTV 48259 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHom 𝑦))) |
| 27 | 8, 24, 26 | 3eqtr4rd 2775 | 1 ⊢ (𝜑 → 𝐹 = ( RngHom ↾ (𝐵 × 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3402 ⦋csb 3859 ∩ cin 3910 ⊆ wss 3911 × cxp 5629 ↾ cres 5633 Fn wfn 6494 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 ↑m cmap 8776 Basecbs 17155 +gcplusg 17196 .rcmulr 17197 Homf chomf 17607 Rngcrng 20072 RngHom crnghm 20354 RngCatALTVcrngcALTV 48244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-hom 17220 df-cco 17221 df-homf 17611 df-rnghm 20356 df-rngcALTV 48245 |
| This theorem is referenced by: rhmsubcALTV 48266 |
| Copyright terms: Public domain | W3C validator |