| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngchomrnghmresALTV | Structured version Visualization version GIF version | ||
| Description: The value of the functionalized Hom-set operation in the category of non-unital rings (in a universe) as restriction of the non-unital ring homomorphisms. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rngchomrnghmresALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
| rngchomrnghmresALTV.b | ⊢ 𝐵 = (Rng ∩ 𝑈) |
| rngchomrnghmresALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rngchomrnghmresALTV.f | ⊢ 𝐹 = (Homf ‘𝐶) |
| Ref | Expression |
|---|---|
| rngchomrnghmresALTV | ⊢ (𝜑 → 𝐹 = ( RngHom ↾ (𝐵 × 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngchomrnghmresALTV.c | . . . . 5 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | rngchomrnghmresALTV.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 4 | 1, 2, 3 | rngcbasALTV 48365 | . . . 4 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng)) |
| 5 | inss2 4185 | . . . 4 ⊢ (𝑈 ∩ Rng) ⊆ Rng | |
| 6 | 4, 5 | eqsstrdi 3974 | . . 3 ⊢ (𝜑 → (Base‘𝐶) ⊆ Rng) |
| 7 | resmpo 7466 | . . 3 ⊢ (((Base‘𝐶) ⊆ Rng ∧ (Base‘𝐶) ⊆ Rng) → ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHom 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHom 𝑦))) | |
| 8 | 6, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHom 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHom 𝑦))) |
| 9 | df-rnghm 20354 | . . . . . 6 ⊢ RngHom = (𝑟 ∈ Rng, 𝑠 ∈ Rng ↦ ⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))}) | |
| 10 | ovex 7379 | . . . . . . . . 9 ⊢ (𝑤 ↑m 𝑣) ∈ V | |
| 11 | 10 | rabex 5275 | . . . . . . . 8 ⊢ {𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} ∈ V |
| 12 | 11 | csbex 5247 | . . . . . . 7 ⊢ ⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} ∈ V |
| 13 | 12 | csbex 5247 | . . . . . 6 ⊢ ⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} ∈ V |
| 14 | 9, 13 | fnmpoi 8002 | . . . . 5 ⊢ RngHom Fn (Rng × Rng) |
| 15 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → RngHom Fn (Rng × Rng)) |
| 16 | fnov 7477 | . . . 4 ⊢ ( RngHom Fn (Rng × Rng) ↔ RngHom = (𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHom 𝑦))) | |
| 17 | 15, 16 | sylib 218 | . . 3 ⊢ (𝜑 → RngHom = (𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHom 𝑦))) |
| 18 | incom 4156 | . . . . . 6 ⊢ (𝑈 ∩ Rng) = (Rng ∩ 𝑈) | |
| 19 | 18 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑈 ∩ Rng) = (Rng ∩ 𝑈)) |
| 20 | rngchomrnghmresALTV.b | . . . . . 6 ⊢ 𝐵 = (Rng ∩ 𝑈) | |
| 21 | 20 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) |
| 22 | 19, 4, 21 | 3eqtr4rd 2777 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
| 23 | 22 | sqxpeqd 5646 | . . 3 ⊢ (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐶) × (Base‘𝐶))) |
| 24 | 17, 23 | reseq12d 5928 | . 2 ⊢ (𝜑 → ( RngHom ↾ (𝐵 × 𝐵)) = ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHom 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
| 25 | rngchomrnghmresALTV.f | . . 3 ⊢ 𝐹 = (Homf ‘𝐶) | |
| 26 | 1, 2, 3, 25 | rngchomffvalALTV 48377 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHom 𝑦))) |
| 27 | 8, 24, 26 | 3eqtr4rd 2777 | 1 ⊢ (𝜑 → 𝐹 = ( RngHom ↾ (𝐵 × 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ⦋csb 3845 ∩ cin 3896 ⊆ wss 3897 × cxp 5612 ↾ cres 5616 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ↑m cmap 8750 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 Homf chomf 17572 Rngcrng 20070 RngHom crnghm 20352 RngCatALTVcrngcALTV 48362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-hom 17185 df-cco 17186 df-homf 17576 df-rnghm 20354 df-rngcALTV 48363 |
| This theorem is referenced by: rhmsubcALTV 48384 |
| Copyright terms: Public domain | W3C validator |