![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngchomrnghmresALTV | Structured version Visualization version GIF version |
Description: The value of the functionalized Hom-set operation in the category of non-unital rings (in a universe) as restriction of the non-unital ring homomorphisms. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngchomrnghmresALTV.c | β’ πΆ = (RngCatALTVβπ) |
rngchomrnghmresALTV.b | β’ π΅ = (Rng β© π) |
rngchomrnghmresALTV.u | β’ (π β π β π) |
rngchomrnghmresALTV.f | β’ πΉ = (Homf βπΆ) |
Ref | Expression |
---|---|
rngchomrnghmresALTV | β’ (π β πΉ = ( RngHomo βΎ (π΅ Γ π΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngchomrnghmresALTV.c | . . . . 5 β’ πΆ = (RngCatALTVβπ) | |
2 | eqid 2733 | . . . . 5 β’ (BaseβπΆ) = (BaseβπΆ) | |
3 | rngchomrnghmresALTV.u | . . . . 5 β’ (π β π β π) | |
4 | 1, 2, 3 | rngcbasALTV 46881 | . . . 4 β’ (π β (BaseβπΆ) = (π β© Rng)) |
5 | inss2 4230 | . . . 4 β’ (π β© Rng) β Rng | |
6 | 4, 5 | eqsstrdi 4037 | . . 3 β’ (π β (BaseβπΆ) β Rng) |
7 | resmpo 7528 | . . 3 β’ (((BaseβπΆ) β Rng β§ (BaseβπΆ) β Rng) β ((π₯ β Rng, π¦ β Rng β¦ (π₯ RngHomo π¦)) βΎ ((BaseβπΆ) Γ (BaseβπΆ))) = (π₯ β (BaseβπΆ), π¦ β (BaseβπΆ) β¦ (π₯ RngHomo π¦))) | |
8 | 6, 6, 7 | syl2anc 585 | . 2 β’ (π β ((π₯ β Rng, π¦ β Rng β¦ (π₯ RngHomo π¦)) βΎ ((BaseβπΆ) Γ (BaseβπΆ))) = (π₯ β (BaseβπΆ), π¦ β (BaseβπΆ) β¦ (π₯ RngHomo π¦))) |
9 | df-rnghomo 46685 | . . . . . 6 β’ RngHomo = (π β Rng, π β Rng β¦ β¦(Baseβπ) / π£β¦β¦(Baseβπ ) / π€β¦{π β (π€ βm π£) β£ βπ₯ β π£ βπ¦ β π£ ((πβ(π₯(+gβπ)π¦)) = ((πβπ₯)(+gβπ )(πβπ¦)) β§ (πβ(π₯(.rβπ)π¦)) = ((πβπ₯)(.rβπ )(πβπ¦)))}) | |
10 | ovex 7442 | . . . . . . . . 9 β’ (π€ βm π£) β V | |
11 | 10 | rabex 5333 | . . . . . . . 8 β’ {π β (π€ βm π£) β£ βπ₯ β π£ βπ¦ β π£ ((πβ(π₯(+gβπ)π¦)) = ((πβπ₯)(+gβπ )(πβπ¦)) β§ (πβ(π₯(.rβπ)π¦)) = ((πβπ₯)(.rβπ )(πβπ¦)))} β V |
12 | 11 | csbex 5312 | . . . . . . 7 β’ β¦(Baseβπ ) / π€β¦{π β (π€ βm π£) β£ βπ₯ β π£ βπ¦ β π£ ((πβ(π₯(+gβπ)π¦)) = ((πβπ₯)(+gβπ )(πβπ¦)) β§ (πβ(π₯(.rβπ)π¦)) = ((πβπ₯)(.rβπ )(πβπ¦)))} β V |
13 | 12 | csbex 5312 | . . . . . 6 β’ β¦(Baseβπ) / π£β¦β¦(Baseβπ ) / π€β¦{π β (π€ βm π£) β£ βπ₯ β π£ βπ¦ β π£ ((πβ(π₯(+gβπ)π¦)) = ((πβπ₯)(+gβπ )(πβπ¦)) β§ (πβ(π₯(.rβπ)π¦)) = ((πβπ₯)(.rβπ )(πβπ¦)))} β V |
14 | 9, 13 | fnmpoi 8056 | . . . . 5 β’ RngHomo Fn (Rng Γ Rng) |
15 | 14 | a1i 11 | . . . 4 β’ (π β RngHomo Fn (Rng Γ Rng)) |
16 | fnov 7540 | . . . 4 β’ ( RngHomo Fn (Rng Γ Rng) β RngHomo = (π₯ β Rng, π¦ β Rng β¦ (π₯ RngHomo π¦))) | |
17 | 15, 16 | sylib 217 | . . 3 β’ (π β RngHomo = (π₯ β Rng, π¦ β Rng β¦ (π₯ RngHomo π¦))) |
18 | incom 4202 | . . . . . 6 β’ (π β© Rng) = (Rng β© π) | |
19 | 18 | a1i 11 | . . . . 5 β’ (π β (π β© Rng) = (Rng β© π)) |
20 | rngchomrnghmresALTV.b | . . . . . 6 β’ π΅ = (Rng β© π) | |
21 | 20 | a1i 11 | . . . . 5 β’ (π β π΅ = (Rng β© π)) |
22 | 19, 4, 21 | 3eqtr4rd 2784 | . . . 4 β’ (π β π΅ = (BaseβπΆ)) |
23 | 22 | sqxpeqd 5709 | . . 3 β’ (π β (π΅ Γ π΅) = ((BaseβπΆ) Γ (BaseβπΆ))) |
24 | 17, 23 | reseq12d 5983 | . 2 β’ (π β ( RngHomo βΎ (π΅ Γ π΅)) = ((π₯ β Rng, π¦ β Rng β¦ (π₯ RngHomo π¦)) βΎ ((BaseβπΆ) Γ (BaseβπΆ)))) |
25 | rngchomrnghmresALTV.f | . . 3 β’ πΉ = (Homf βπΆ) | |
26 | 1, 2, 3, 25 | rngchomffvalALTV 46893 | . 2 β’ (π β πΉ = (π₯ β (BaseβπΆ), π¦ β (BaseβπΆ) β¦ (π₯ RngHomo π¦))) |
27 | 8, 24, 26 | 3eqtr4rd 2784 | 1 β’ (π β πΉ = ( RngHomo βΎ (π΅ Γ π΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 βwral 3062 {crab 3433 β¦csb 3894 β© cin 3948 β wss 3949 Γ cxp 5675 βΎ cres 5679 Fn wfn 6539 βcfv 6544 (class class class)co 7409 β cmpo 7411 βm cmap 8820 Basecbs 17144 +gcplusg 17197 .rcmulr 17198 Homf chomf 17610 Rngcrng 46648 RngHomo crngh 46683 RngCatALTVcrngcALTV 46856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-struct 17080 df-slot 17115 df-ndx 17127 df-base 17145 df-hom 17221 df-cco 17222 df-homf 17614 df-rnghomo 46685 df-rngcALTV 46858 |
This theorem is referenced by: rhmsubcALTV 47006 |
Copyright terms: Public domain | W3C validator |