![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > odf | Structured version Visualization version GIF version |
Description: Functionality of the group element order. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 5-Oct-2020.) |
Ref | Expression |
---|---|
odcl.1 | β’ π = (BaseβπΊ) |
odcl.2 | β’ π = (odβπΊ) |
Ref | Expression |
---|---|
odf | β’ π:πβΆβ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 11210 | . . . . 5 β’ 0 β V | |
2 | ltso 11296 | . . . . . 6 β’ < Or β | |
3 | 2 | infex 9490 | . . . . 5 β’ inf(π€, β, < ) β V |
4 | 1, 3 | ifex 4578 | . . . 4 β’ if(π€ = β , 0, inf(π€, β, < )) β V |
5 | 4 | csbex 5311 | . . 3 β’ β¦{π§ β β β£ (π§(.gβπΊ)π¦) = (0gβπΊ)} / π€β¦if(π€ = β , 0, inf(π€, β, < )) β V |
6 | odcl.1 | . . . 4 β’ π = (BaseβπΊ) | |
7 | eqid 2732 | . . . 4 β’ (.gβπΊ) = (.gβπΊ) | |
8 | eqid 2732 | . . . 4 β’ (0gβπΊ) = (0gβπΊ) | |
9 | odcl.2 | . . . 4 β’ π = (odβπΊ) | |
10 | 6, 7, 8, 9 | odfval 19402 | . . 3 β’ π = (π¦ β π β¦ β¦{π§ β β β£ (π§(.gβπΊ)π¦) = (0gβπΊ)} / π€β¦if(π€ = β , 0, inf(π€, β, < ))) |
11 | 5, 10 | fnmpti 6693 | . 2 β’ π Fn π |
12 | 6, 9 | odcl 19406 | . . 3 β’ (π₯ β π β (πβπ₯) β β0) |
13 | 12 | rgen 3063 | . 2 β’ βπ₯ β π (πβπ₯) β β0 |
14 | ffnfv 7120 | . 2 β’ (π:πβΆβ0 β (π Fn π β§ βπ₯ β π (πβπ₯) β β0)) | |
15 | 11, 13, 14 | mpbir2an 709 | 1 β’ π:πβΆβ0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 β wcel 2106 βwral 3061 {crab 3432 β¦csb 3893 β c0 4322 ifcif 4528 Fn wfn 6538 βΆwf 6539 βcfv 6543 (class class class)co 7411 infcinf 9438 βcr 11111 0cc0 11112 < clt 11250 βcn 12214 β0cn0 12474 Basecbs 17146 0gc0g 17387 .gcmg 18952 odcod 19394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-nn 12215 df-n0 12475 df-z 12561 df-uz 12825 df-od 19398 |
This theorem is referenced by: gexex 19723 torsubg 19724 proot1mul 42029 proot1hash 42030 proot1ex 42031 |
Copyright terms: Public domain | W3C validator |