![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > odf | Structured version Visualization version GIF version |
Description: Functionality of the group element order. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 5-Oct-2020.) |
Ref | Expression |
---|---|
odcl.1 | ⊢ 𝑋 = (Base‘𝐺) |
odcl.2 | ⊢ 𝑂 = (od‘𝐺) |
Ref | Expression |
---|---|
odf | ⊢ 𝑂:𝑋⟶ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 11245 | . . . . 5 ⊢ 0 ∈ V | |
2 | ltso 11331 | . . . . . 6 ⊢ < Or ℝ | |
3 | 2 | infex 9523 | . . . . 5 ⊢ inf(𝑤, ℝ, < ) ∈ V |
4 | 1, 3 | ifex 4580 | . . . 4 ⊢ if(𝑤 = ∅, 0, inf(𝑤, ℝ, < )) ∈ V |
5 | 4 | csbex 5312 | . . 3 ⊢ ⦋{𝑧 ∈ ℕ ∣ (𝑧(.g‘𝐺)𝑦) = (0g‘𝐺)} / 𝑤⦌if(𝑤 = ∅, 0, inf(𝑤, ℝ, < )) ∈ V |
6 | odcl.1 | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
7 | eqid 2725 | . . . 4 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
8 | eqid 2725 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
9 | odcl.2 | . . . 4 ⊢ 𝑂 = (od‘𝐺) | |
10 | 6, 7, 8, 9 | odfval 19504 | . . 3 ⊢ 𝑂 = (𝑦 ∈ 𝑋 ↦ ⦋{𝑧 ∈ ℕ ∣ (𝑧(.g‘𝐺)𝑦) = (0g‘𝐺)} / 𝑤⦌if(𝑤 = ∅, 0, inf(𝑤, ℝ, < ))) |
11 | 5, 10 | fnmpti 6699 | . 2 ⊢ 𝑂 Fn 𝑋 |
12 | 6, 9 | odcl 19508 | . . 3 ⊢ (𝑥 ∈ 𝑋 → (𝑂‘𝑥) ∈ ℕ0) |
13 | 12 | rgen 3052 | . 2 ⊢ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ ℕ0 |
14 | ffnfv 7128 | . 2 ⊢ (𝑂:𝑋⟶ℕ0 ↔ (𝑂 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ ℕ0)) | |
15 | 11, 13, 14 | mpbir2an 709 | 1 ⊢ 𝑂:𝑋⟶ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 ∀wral 3050 {crab 3418 ⦋csb 3889 ∅c0 4322 ifcif 4530 Fn wfn 6544 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 infcinf 9471 ℝcr 11144 0cc0 11145 < clt 11285 ℕcn 12250 ℕ0cn0 12510 Basecbs 17188 0gc0g 17429 .gcmg 19036 odcod 19496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9472 df-inf 9473 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-nn 12251 df-n0 12511 df-z 12597 df-uz 12861 df-od 19500 |
This theorem is referenced by: gexex 19825 torsubg 19826 proot1mul 42766 proot1hash 42767 proot1ex 42768 |
Copyright terms: Public domain | W3C validator |