Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > odf | Structured version Visualization version GIF version |
Description: Functionality of the group element order. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 5-Oct-2020.) |
Ref | Expression |
---|---|
odcl.1 | ⊢ 𝑋 = (Base‘𝐺) |
odcl.2 | ⊢ 𝑂 = (od‘𝐺) |
Ref | Expression |
---|---|
odf | ⊢ 𝑂:𝑋⟶ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 10997 | . . . . 5 ⊢ 0 ∈ V | |
2 | ltso 11083 | . . . . . 6 ⊢ < Or ℝ | |
3 | 2 | infex 9280 | . . . . 5 ⊢ inf(𝑤, ℝ, < ) ∈ V |
4 | 1, 3 | ifex 4512 | . . . 4 ⊢ if(𝑤 = ∅, 0, inf(𝑤, ℝ, < )) ∈ V |
5 | 4 | csbex 5238 | . . 3 ⊢ ⦋{𝑧 ∈ ℕ ∣ (𝑧(.g‘𝐺)𝑦) = (0g‘𝐺)} / 𝑤⦌if(𝑤 = ∅, 0, inf(𝑤, ℝ, < )) ∈ V |
6 | odcl.1 | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
7 | eqid 2733 | . . . 4 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
8 | eqid 2733 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
9 | odcl.2 | . . . 4 ⊢ 𝑂 = (od‘𝐺) | |
10 | 6, 7, 8, 9 | odfval 19168 | . . 3 ⊢ 𝑂 = (𝑦 ∈ 𝑋 ↦ ⦋{𝑧 ∈ ℕ ∣ (𝑧(.g‘𝐺)𝑦) = (0g‘𝐺)} / 𝑤⦌if(𝑤 = ∅, 0, inf(𝑤, ℝ, < ))) |
11 | 5, 10 | fnmpti 6594 | . 2 ⊢ 𝑂 Fn 𝑋 |
12 | 6, 9 | odcl 19172 | . . 3 ⊢ (𝑥 ∈ 𝑋 → (𝑂‘𝑥) ∈ ℕ0) |
13 | 12 | rgen 3061 | . 2 ⊢ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ ℕ0 |
14 | ffnfv 7012 | . 2 ⊢ (𝑂:𝑋⟶ℕ0 ↔ (𝑂 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ ℕ0)) | |
15 | 11, 13, 14 | mpbir2an 707 | 1 ⊢ 𝑂:𝑋⟶ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2101 ∀wral 3059 {crab 3221 ⦋csb 3834 ∅c0 4259 ifcif 4462 Fn wfn 6442 ⟶wf 6443 ‘cfv 6447 (class class class)co 7295 infcinf 9228 ℝcr 10898 0cc0 10899 < clt 11037 ℕcn 12001 ℕ0cn0 12261 Basecbs 16940 0gc0g 17178 .gcmg 18728 odcod 19160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-sup 9229 df-inf 9230 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-nn 12002 df-n0 12262 df-z 12348 df-uz 12611 df-od 19164 |
This theorem is referenced by: gexex 19482 torsubg 19483 proot1mul 41048 proot1hash 41049 proot1ex 41050 |
Copyright terms: Public domain | W3C validator |