Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmshmeo Structured version   Visualization version   GIF version

Theorem cvmshmeo 33133
Description: Every element of an even covering of 𝑈 is homeomorphic to 𝑈 via 𝐹. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypothesis
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
Assertion
Ref Expression
cvmshmeo ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐹𝐴) ∈ ((𝐶t 𝐴)Homeo(𝐽t 𝑈)))
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣   𝑘,𝐽,𝑠,𝑢,𝑣   𝑈,𝑘,𝑠,𝑢,𝑣   𝑇,𝑠,𝑢,𝑣   𝑢,𝐴,𝑣
Allowed substitution hints:   𝐴(𝑘,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)   𝑇(𝑘)

Proof of Theorem cvmshmeo
StepHypRef Expression
1 cvmcov.1 . . . . . 6 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
21cvmsi 33127 . . . . 5 (𝑇 ∈ (𝑆𝑈) → (𝑈𝐽 ∧ (𝑇𝐶𝑇 ≠ ∅) ∧ ( 𝑇 = (𝐹𝑈) ∧ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))))
32simp3d 1142 . . . 4 (𝑇 ∈ (𝑆𝑈) → ( 𝑇 = (𝐹𝑈) ∧ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))))
43simprd 495 . . 3 (𝑇 ∈ (𝑆𝑈) → ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))
5 simpr 484 . . . 4 ((∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))) → (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))
65ralimi 3086 . . 3 (∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))) → ∀𝑢𝑇 (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))
74, 6syl 17 . 2 (𝑇 ∈ (𝑆𝑈) → ∀𝑢𝑇 (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))
8 reseq2 5875 . . . 4 (𝑢 = 𝐴 → (𝐹𝑢) = (𝐹𝐴))
9 oveq2 7263 . . . . 5 (𝑢 = 𝐴 → (𝐶t 𝑢) = (𝐶t 𝐴))
109oveq1d 7270 . . . 4 (𝑢 = 𝐴 → ((𝐶t 𝑢)Homeo(𝐽t 𝑈)) = ((𝐶t 𝐴)Homeo(𝐽t 𝑈)))
118, 10eleq12d 2833 . . 3 (𝑢 = 𝐴 → ((𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)) ↔ (𝐹𝐴) ∈ ((𝐶t 𝐴)Homeo(𝐽t 𝑈))))
1211rspccva 3551 . 2 ((∀𝑢𝑇 (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)) ∧ 𝐴𝑇) → (𝐹𝐴) ∈ ((𝐶t 𝐴)Homeo(𝐽t 𝑈)))
137, 12sylan 579 1 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐹𝐴) ∈ ((𝐶t 𝐴)Homeo(𝐽t 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  {crab 3067  cdif 3880  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558   cuni 4836  cmpt 5153  ccnv 5579  cres 5582  cima 5583  cfv 6418  (class class class)co 7255  t crest 17048  Homeochmeo 22812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258
This theorem is referenced by:  cvmsf1o  33134  cvmsss2  33136  cvmopnlem  33140  cvmliftlem8  33154
  Copyright terms: Public domain W3C validator