Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmshmeo | Structured version Visualization version GIF version |
Description: Every element of an even covering of 𝑈 is homeomorphic to 𝑈 via 𝐹. (Contributed by Mario Carneiro, 13-Feb-2015.) |
Ref | Expression |
---|---|
cvmcov.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
Ref | Expression |
---|---|
cvmshmeo | ⊢ ((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐹 ↾ 𝐴) ∈ ((𝐶 ↾t 𝐴)Homeo(𝐽 ↾t 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmcov.1 | . . . . . 6 ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
2 | 1 | cvmsi 33127 | . . . . 5 ⊢ (𝑇 ∈ (𝑆‘𝑈) → (𝑈 ∈ 𝐽 ∧ (𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅) ∧ (∪ 𝑇 = (◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))))) |
3 | 2 | simp3d 1142 | . . . 4 ⊢ (𝑇 ∈ (𝑆‘𝑈) → (∪ 𝑇 = (◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))) |
4 | 3 | simprd 495 | . . 3 ⊢ (𝑇 ∈ (𝑆‘𝑈) → ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))) |
5 | simpr 484 | . . . 4 ⊢ ((∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))) → (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))) | |
6 | 5 | ralimi 3086 | . . 3 ⊢ (∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))) → ∀𝑢 ∈ 𝑇 (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))) |
7 | 4, 6 | syl 17 | . 2 ⊢ (𝑇 ∈ (𝑆‘𝑈) → ∀𝑢 ∈ 𝑇 (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))) |
8 | reseq2 5875 | . . . 4 ⊢ (𝑢 = 𝐴 → (𝐹 ↾ 𝑢) = (𝐹 ↾ 𝐴)) | |
9 | oveq2 7263 | . . . . 5 ⊢ (𝑢 = 𝐴 → (𝐶 ↾t 𝑢) = (𝐶 ↾t 𝐴)) | |
10 | 9 | oveq1d 7270 | . . . 4 ⊢ (𝑢 = 𝐴 → ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)) = ((𝐶 ↾t 𝐴)Homeo(𝐽 ↾t 𝑈))) |
11 | 8, 10 | eleq12d 2833 | . . 3 ⊢ (𝑢 = 𝐴 → ((𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)) ↔ (𝐹 ↾ 𝐴) ∈ ((𝐶 ↾t 𝐴)Homeo(𝐽 ↾t 𝑈)))) |
12 | 11 | rspccva 3551 | . 2 ⊢ ((∀𝑢 ∈ 𝑇 (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)) ∧ 𝐴 ∈ 𝑇) → (𝐹 ↾ 𝐴) ∈ ((𝐶 ↾t 𝐴)Homeo(𝐽 ↾t 𝑈))) |
13 | 7, 12 | sylan 579 | 1 ⊢ ((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐹 ↾ 𝐴) ∈ ((𝐶 ↾t 𝐴)Homeo(𝐽 ↾t 𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 {crab 3067 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 {csn 4558 ∪ cuni 4836 ↦ cmpt 5153 ◡ccnv 5579 ↾ cres 5582 “ cima 5583 ‘cfv 6418 (class class class)co 7255 ↾t crest 17048 Homeochmeo 22812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 |
This theorem is referenced by: cvmsf1o 33134 cvmsss2 33136 cvmopnlem 33140 cvmliftlem8 33154 |
Copyright terms: Public domain | W3C validator |