Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmsdisj Structured version   Visualization version   GIF version

Theorem cvmsdisj 35238
Description: An even covering of 𝑈 is a disjoint union. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypothesis
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
Assertion
Ref Expression
cvmsdisj ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇𝐵𝑇) → (𝐴 = 𝐵 ∨ (𝐴𝐵) = ∅))
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣   𝑘,𝐽,𝑠,𝑢,𝑣   𝑈,𝑘,𝑠,𝑢,𝑣   𝑇,𝑠,𝑢,𝑣   𝑢,𝐴,𝑣   𝑣,𝐵
Allowed substitution hints:   𝐴(𝑘,𝑠)   𝐵(𝑢,𝑘,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)   𝑇(𝑘)

Proof of Theorem cvmsdisj
StepHypRef Expression
1 df-ne 2947 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 cvmcov.1 . . . . . . . . . . 11 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
32cvmsi 35233 . . . . . . . . . 10 (𝑇 ∈ (𝑆𝑈) → (𝑈𝐽 ∧ (𝑇𝐶𝑇 ≠ ∅) ∧ ( 𝑇 = (𝐹𝑈) ∧ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))))
43simp3d 1144 . . . . . . . . 9 (𝑇 ∈ (𝑆𝑈) → ( 𝑇 = (𝐹𝑈) ∧ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))))
54simprd 495 . . . . . . . 8 (𝑇 ∈ (𝑆𝑈) → ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))
6 simpl 482 . . . . . . . . 9 ((∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))) → ∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅)
76ralimi 3089 . . . . . . . 8 (∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))) → ∀𝑢𝑇𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅)
85, 7syl 17 . . . . . . 7 (𝑇 ∈ (𝑆𝑈) → ∀𝑢𝑇𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅)
9 sneq 4658 . . . . . . . . . 10 (𝑢 = 𝐴 → {𝑢} = {𝐴})
109difeq2d 4149 . . . . . . . . 9 (𝑢 = 𝐴 → (𝑇 ∖ {𝑢}) = (𝑇 ∖ {𝐴}))
11 ineq1 4234 . . . . . . . . . 10 (𝑢 = 𝐴 → (𝑢𝑣) = (𝐴𝑣))
1211eqeq1d 2742 . . . . . . . . 9 (𝑢 = 𝐴 → ((𝑢𝑣) = ∅ ↔ (𝐴𝑣) = ∅))
1310, 12raleqbidv 3354 . . . . . . . 8 (𝑢 = 𝐴 → (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ↔ ∀𝑣 ∈ (𝑇 ∖ {𝐴})(𝐴𝑣) = ∅))
1413rspccva 3634 . . . . . . 7 ((∀𝑢𝑇𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ 𝐴𝑇) → ∀𝑣 ∈ (𝑇 ∖ {𝐴})(𝐴𝑣) = ∅)
158, 14sylan 579 . . . . . 6 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ∀𝑣 ∈ (𝑇 ∖ {𝐴})(𝐴𝑣) = ∅)
16 necom 3000 . . . . . . 7 (𝐴𝐵𝐵𝐴)
17 eldifsn 4811 . . . . . . . 8 (𝐵 ∈ (𝑇 ∖ {𝐴}) ↔ (𝐵𝑇𝐵𝐴))
1817biimpri 228 . . . . . . 7 ((𝐵𝑇𝐵𝐴) → 𝐵 ∈ (𝑇 ∖ {𝐴}))
1916, 18sylan2b 593 . . . . . 6 ((𝐵𝑇𝐴𝐵) → 𝐵 ∈ (𝑇 ∖ {𝐴}))
20 ineq2 4235 . . . . . . . 8 (𝑣 = 𝐵 → (𝐴𝑣) = (𝐴𝐵))
2120eqeq1d 2742 . . . . . . 7 (𝑣 = 𝐵 → ((𝐴𝑣) = ∅ ↔ (𝐴𝐵) = ∅))
2221rspccv 3632 . . . . . 6 (∀𝑣 ∈ (𝑇 ∖ {𝐴})(𝐴𝑣) = ∅ → (𝐵 ∈ (𝑇 ∖ {𝐴}) → (𝐴𝐵) = ∅))
2315, 19, 22syl2im 40 . . . . 5 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ((𝐵𝑇𝐴𝐵) → (𝐴𝐵) = ∅))
2423expd 415 . . . 4 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐵𝑇 → (𝐴𝐵 → (𝐴𝐵) = ∅)))
25243impia 1117 . . 3 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇𝐵𝑇) → (𝐴𝐵 → (𝐴𝐵) = ∅))
261, 25biimtrrid 243 . 2 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇𝐵𝑇) → (¬ 𝐴 = 𝐵 → (𝐴𝐵) = ∅))
2726orrd 862 1 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇𝐵𝑇) → (𝐴 = 𝐵 ∨ (𝐴𝐵) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  {crab 3443  cdif 3973  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   cuni 4931  cmpt 5249  ccnv 5699  cres 5702  cima 5703  cfv 6573  (class class class)co 7448  t crest 17480  Homeochmeo 23782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451
This theorem is referenced by:  cvmscld  35241  cvmsss2  35242  cvmseu  35244
  Copyright terms: Public domain W3C validator