Proof of Theorem cvmsdisj
Step | Hyp | Ref
| Expression |
1 | | df-ne 2941 |
. . 3
⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) |
2 | | cvmcov.1 |
. . . . . . . . . . 11
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
3 | 2 | cvmsi 32940 |
. . . . . . . . . 10
⊢ (𝑇 ∈ (𝑆‘𝑈) → (𝑈 ∈ 𝐽 ∧ (𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅) ∧ (∪ 𝑇 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))))) |
4 | 3 | simp3d 1146 |
. . . . . . . . 9
⊢ (𝑇 ∈ (𝑆‘𝑈) → (∪ 𝑇 = (◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))) |
5 | 4 | simprd 499 |
. . . . . . . 8
⊢ (𝑇 ∈ (𝑆‘𝑈) → ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))) |
6 | | simpl 486 |
. . . . . . . . 9
⊢
((∀𝑣 ∈
(𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))) → ∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅) |
7 | 6 | ralimi 3083 |
. . . . . . . 8
⊢
(∀𝑢 ∈
𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))) → ∀𝑢 ∈ 𝑇 ∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅) |
8 | 5, 7 | syl 17 |
. . . . . . 7
⊢ (𝑇 ∈ (𝑆‘𝑈) → ∀𝑢 ∈ 𝑇 ∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅) |
9 | | sneq 4551 |
. . . . . . . . . 10
⊢ (𝑢 = 𝐴 → {𝑢} = {𝐴}) |
10 | 9 | difeq2d 4037 |
. . . . . . . . 9
⊢ (𝑢 = 𝐴 → (𝑇 ∖ {𝑢}) = (𝑇 ∖ {𝐴})) |
11 | | ineq1 4120 |
. . . . . . . . . 10
⊢ (𝑢 = 𝐴 → (𝑢 ∩ 𝑣) = (𝐴 ∩ 𝑣)) |
12 | 11 | eqeq1d 2739 |
. . . . . . . . 9
⊢ (𝑢 = 𝐴 → ((𝑢 ∩ 𝑣) = ∅ ↔ (𝐴 ∩ 𝑣) = ∅)) |
13 | 10, 12 | raleqbidv 3313 |
. . . . . . . 8
⊢ (𝑢 = 𝐴 → (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ↔ ∀𝑣 ∈ (𝑇 ∖ {𝐴})(𝐴 ∩ 𝑣) = ∅)) |
14 | 13 | rspccva 3536 |
. . . . . . 7
⊢
((∀𝑢 ∈
𝑇 ∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ 𝐴 ∈ 𝑇) → ∀𝑣 ∈ (𝑇 ∖ {𝐴})(𝐴 ∩ 𝑣) = ∅) |
15 | 8, 14 | sylan 583 |
. . . . . 6
⊢ ((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ∀𝑣 ∈ (𝑇 ∖ {𝐴})(𝐴 ∩ 𝑣) = ∅) |
16 | | necom 2994 |
. . . . . . 7
⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) |
17 | | eldifsn 4700 |
. . . . . . . 8
⊢ (𝐵 ∈ (𝑇 ∖ {𝐴}) ↔ (𝐵 ∈ 𝑇 ∧ 𝐵 ≠ 𝐴)) |
18 | 17 | biimpri 231 |
. . . . . . 7
⊢ ((𝐵 ∈ 𝑇 ∧ 𝐵 ≠ 𝐴) → 𝐵 ∈ (𝑇 ∖ {𝐴})) |
19 | 16, 18 | sylan2b 597 |
. . . . . 6
⊢ ((𝐵 ∈ 𝑇 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ (𝑇 ∖ {𝐴})) |
20 | | ineq2 4121 |
. . . . . . . 8
⊢ (𝑣 = 𝐵 → (𝐴 ∩ 𝑣) = (𝐴 ∩ 𝐵)) |
21 | 20 | eqeq1d 2739 |
. . . . . . 7
⊢ (𝑣 = 𝐵 → ((𝐴 ∩ 𝑣) = ∅ ↔ (𝐴 ∩ 𝐵) = ∅)) |
22 | 21 | rspccv 3534 |
. . . . . 6
⊢
(∀𝑣 ∈
(𝑇 ∖ {𝐴})(𝐴 ∩ 𝑣) = ∅ → (𝐵 ∈ (𝑇 ∖ {𝐴}) → (𝐴 ∩ 𝐵) = ∅)) |
23 | 15, 19, 22 | syl2im 40 |
. . . . 5
⊢ ((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ((𝐵 ∈ 𝑇 ∧ 𝐴 ≠ 𝐵) → (𝐴 ∩ 𝐵) = ∅)) |
24 | 23 | expd 419 |
. . . 4
⊢ ((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐵 ∈ 𝑇 → (𝐴 ≠ 𝐵 → (𝐴 ∩ 𝐵) = ∅))) |
25 | 24 | 3impia 1119 |
. . 3
⊢ ((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → (𝐴 ≠ 𝐵 → (𝐴 ∩ 𝐵) = ∅)) |
26 | 1, 25 | syl5bir 246 |
. 2
⊢ ((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → (¬ 𝐴 = 𝐵 → (𝐴 ∩ 𝐵) = ∅)) |
27 | 26 | orrd 863 |
1
⊢ ((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → (𝐴 = 𝐵 ∨ (𝐴 ∩ 𝐵) = ∅)) |