Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmsdisj Structured version   Visualization version   GIF version

Theorem cvmsdisj 32945
Description: An even covering of 𝑈 is a disjoint union. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypothesis
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
Assertion
Ref Expression
cvmsdisj ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇𝐵𝑇) → (𝐴 = 𝐵 ∨ (𝐴𝐵) = ∅))
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣   𝑘,𝐽,𝑠,𝑢,𝑣   𝑈,𝑘,𝑠,𝑢,𝑣   𝑇,𝑠,𝑢,𝑣   𝑢,𝐴,𝑣   𝑣,𝐵
Allowed substitution hints:   𝐴(𝑘,𝑠)   𝐵(𝑢,𝑘,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)   𝑇(𝑘)

Proof of Theorem cvmsdisj
StepHypRef Expression
1 df-ne 2941 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 cvmcov.1 . . . . . . . . . . 11 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
32cvmsi 32940 . . . . . . . . . 10 (𝑇 ∈ (𝑆𝑈) → (𝑈𝐽 ∧ (𝑇𝐶𝑇 ≠ ∅) ∧ ( 𝑇 = (𝐹𝑈) ∧ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))))
43simp3d 1146 . . . . . . . . 9 (𝑇 ∈ (𝑆𝑈) → ( 𝑇 = (𝐹𝑈) ∧ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))))
54simprd 499 . . . . . . . 8 (𝑇 ∈ (𝑆𝑈) → ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))
6 simpl 486 . . . . . . . . 9 ((∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))) → ∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅)
76ralimi 3083 . . . . . . . 8 (∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))) → ∀𝑢𝑇𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅)
85, 7syl 17 . . . . . . 7 (𝑇 ∈ (𝑆𝑈) → ∀𝑢𝑇𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅)
9 sneq 4551 . . . . . . . . . 10 (𝑢 = 𝐴 → {𝑢} = {𝐴})
109difeq2d 4037 . . . . . . . . 9 (𝑢 = 𝐴 → (𝑇 ∖ {𝑢}) = (𝑇 ∖ {𝐴}))
11 ineq1 4120 . . . . . . . . . 10 (𝑢 = 𝐴 → (𝑢𝑣) = (𝐴𝑣))
1211eqeq1d 2739 . . . . . . . . 9 (𝑢 = 𝐴 → ((𝑢𝑣) = ∅ ↔ (𝐴𝑣) = ∅))
1310, 12raleqbidv 3313 . . . . . . . 8 (𝑢 = 𝐴 → (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ↔ ∀𝑣 ∈ (𝑇 ∖ {𝐴})(𝐴𝑣) = ∅))
1413rspccva 3536 . . . . . . 7 ((∀𝑢𝑇𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ 𝐴𝑇) → ∀𝑣 ∈ (𝑇 ∖ {𝐴})(𝐴𝑣) = ∅)
158, 14sylan 583 . . . . . 6 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ∀𝑣 ∈ (𝑇 ∖ {𝐴})(𝐴𝑣) = ∅)
16 necom 2994 . . . . . . 7 (𝐴𝐵𝐵𝐴)
17 eldifsn 4700 . . . . . . . 8 (𝐵 ∈ (𝑇 ∖ {𝐴}) ↔ (𝐵𝑇𝐵𝐴))
1817biimpri 231 . . . . . . 7 ((𝐵𝑇𝐵𝐴) → 𝐵 ∈ (𝑇 ∖ {𝐴}))
1916, 18sylan2b 597 . . . . . 6 ((𝐵𝑇𝐴𝐵) → 𝐵 ∈ (𝑇 ∖ {𝐴}))
20 ineq2 4121 . . . . . . . 8 (𝑣 = 𝐵 → (𝐴𝑣) = (𝐴𝐵))
2120eqeq1d 2739 . . . . . . 7 (𝑣 = 𝐵 → ((𝐴𝑣) = ∅ ↔ (𝐴𝐵) = ∅))
2221rspccv 3534 . . . . . 6 (∀𝑣 ∈ (𝑇 ∖ {𝐴})(𝐴𝑣) = ∅ → (𝐵 ∈ (𝑇 ∖ {𝐴}) → (𝐴𝐵) = ∅))
2315, 19, 22syl2im 40 . . . . 5 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ((𝐵𝑇𝐴𝐵) → (𝐴𝐵) = ∅))
2423expd 419 . . . 4 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐵𝑇 → (𝐴𝐵 → (𝐴𝐵) = ∅)))
25243impia 1119 . . 3 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇𝐵𝑇) → (𝐴𝐵 → (𝐴𝐵) = ∅))
261, 25syl5bir 246 . 2 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇𝐵𝑇) → (¬ 𝐴 = 𝐵 → (𝐴𝐵) = ∅))
2726orrd 863 1 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇𝐵𝑇) → (𝐴 = 𝐵 ∨ (𝐴𝐵) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2110  wne 2940  wral 3061  {crab 3065  cdif 3863  cin 3865  wss 3866  c0 4237  𝒫 cpw 4513  {csn 4541   cuni 4819  cmpt 5135  ccnv 5550  cres 5553  cima 5554  cfv 6380  (class class class)co 7213  t crest 16925  Homeochmeo 22650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fv 6388  df-ov 7216
This theorem is referenced by:  cvmscld  32948  cvmsss2  32949  cvmseu  32951
  Copyright terms: Public domain W3C validator