Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem45 | Structured version Visualization version GIF version |
Description: Lemma for dath 37338. Dummy center of perspectivity 𝑐 is not on the line 𝐺𝐻. (Contributed by NM, 16-Aug-2012.) |
Ref | Expression |
---|---|
dalem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalem.l | ⊢ ≤ = (le‘𝐾) |
dalem.j | ⊢ ∨ = (join‘𝐾) |
dalem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalem.ps | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
dalem44.m | ⊢ ∧ = (meet‘𝐾) |
dalem44.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dalem44.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
dalem44.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
dalem44.g | ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) |
dalem44.h | ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) |
dalem44.i | ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) |
Ref | Expression |
---|---|
dalem45 | ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝑐 ≤ (𝐺 ∨ 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalem.ph | . . . 4 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
2 | 1 | dalemkelat 37226 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Lat) |
3 | 2 | 3ad2ant1 1130 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐾 ∈ Lat) |
4 | dalem.ps | . . . 4 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
5 | dalem.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 4, 5 | dalemcceb 37291 | . . 3 ⊢ (𝜓 → 𝑐 ∈ (Base‘𝐾)) |
7 | 6 | 3ad2ant3 1132 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ∈ (Base‘𝐾)) |
8 | 1 | dalemkehl 37225 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ HL) |
9 | 8 | 3ad2ant1 1130 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐾 ∈ HL) |
10 | dalem.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
11 | dalem.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
12 | dalem44.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
13 | dalem44.o | . . . 4 ⊢ 𝑂 = (LPlanes‘𝐾) | |
14 | dalem44.y | . . . 4 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
15 | dalem44.z | . . . 4 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
16 | dalem44.g | . . . 4 ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) | |
17 | 1, 10, 11, 5, 4, 12, 13, 14, 15, 16 | dalem23 37298 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐺 ∈ 𝐴) |
18 | dalem44.h | . . . 4 ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) | |
19 | 1, 10, 11, 5, 4, 12, 13, 14, 15, 18 | dalem29 37303 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐻 ∈ 𝐴) |
20 | eqid 2758 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
21 | 20, 11, 5 | hlatjcl 36969 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴) → (𝐺 ∨ 𝐻) ∈ (Base‘𝐾)) |
22 | 9, 17, 19, 21 | syl3anc 1368 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝐺 ∨ 𝐻) ∈ (Base‘𝐾)) |
23 | dalem44.i | . . . 4 ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) | |
24 | 1, 10, 11, 5, 4, 12, 13, 14, 15, 23 | dalem34 37308 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐼 ∈ 𝐴) |
25 | 20, 5 | atbase 36891 | . . 3 ⊢ (𝐼 ∈ 𝐴 → 𝐼 ∈ (Base‘𝐾)) |
26 | 24, 25 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐼 ∈ (Base‘𝐾)) |
27 | 1, 10, 11, 5, 4, 12, 13, 14, 15, 16, 18, 23 | dalem44 37318 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝑐 ≤ ((𝐺 ∨ 𝐻) ∨ 𝐼)) |
28 | 20, 10, 11 | latnlej2l 17753 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑐 ∈ (Base‘𝐾) ∧ (𝐺 ∨ 𝐻) ∈ (Base‘𝐾) ∧ 𝐼 ∈ (Base‘𝐾)) ∧ ¬ 𝑐 ≤ ((𝐺 ∨ 𝐻) ∨ 𝐼)) → ¬ 𝑐 ≤ (𝐺 ∨ 𝐻)) |
29 | 3, 7, 22, 26, 27, 28 | syl131anc 1380 | 1 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝑐 ≤ (𝐺 ∨ 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 class class class wbr 5035 ‘cfv 6339 (class class class)co 7155 Basecbs 16546 lecple 16635 joincjn 17625 meetcmee 17626 Latclat 17726 Atomscatm 36865 HLchlt 36952 LPlanesclpl 37094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-proset 17609 df-poset 17627 df-plt 17639 df-lub 17655 df-glb 17656 df-join 17657 df-meet 17658 df-p0 17720 df-lat 17727 df-clat 17789 df-oposet 36778 df-ol 36780 df-oml 36781 df-covers 36868 df-ats 36869 df-atl 36900 df-cvlat 36924 df-hlat 36953 df-llines 37100 df-lplanes 37101 df-lvols 37102 |
This theorem is referenced by: dalem46 37320 dalem51 37325 dalem52 37326 |
Copyright terms: Public domain | W3C validator |