Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem45 Structured version   Visualization version   GIF version

Theorem dalem45 37319
Description: Lemma for dath 37338. Dummy center of perspectivity 𝑐 is not on the line 𝐺𝐻. (Contributed by NM, 16-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem44.m = (meet‘𝐾)
dalem44.o 𝑂 = (LPlanes‘𝐾)
dalem44.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem44.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem44.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem44.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem44.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
Assertion
Ref Expression
dalem45 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 (𝐺 𝐻))

Proof of Theorem dalem45
StepHypRef Expression
1 dalem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkelat 37226 . . 3 (𝜑𝐾 ∈ Lat)
323ad2ant1 1130 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
4 dalem.ps . . . 4 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
5 dalem.a . . . 4 𝐴 = (Atoms‘𝐾)
64, 5dalemcceb 37291 . . 3 (𝜓𝑐 ∈ (Base‘𝐾))
763ad2ant3 1132 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 ∈ (Base‘𝐾))
81dalemkehl 37225 . . . 4 (𝜑𝐾 ∈ HL)
983ad2ant1 1130 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
10 dalem.l . . . 4 = (le‘𝐾)
11 dalem.j . . . 4 = (join‘𝐾)
12 dalem44.m . . . 4 = (meet‘𝐾)
13 dalem44.o . . . 4 𝑂 = (LPlanes‘𝐾)
14 dalem44.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
15 dalem44.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
16 dalem44.g . . . 4 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
171, 10, 11, 5, 4, 12, 13, 14, 15, 16dalem23 37298 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
18 dalem44.h . . . 4 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
191, 10, 11, 5, 4, 12, 13, 14, 15, 18dalem29 37303 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
20 eqid 2758 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2120, 11, 5hlatjcl 36969 . . 3 ((𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴) → (𝐺 𝐻) ∈ (Base‘𝐾))
229, 17, 19, 21syl3anc 1368 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ∈ (Base‘𝐾))
23 dalem44.i . . . 4 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
241, 10, 11, 5, 4, 12, 13, 14, 15, 23dalem34 37308 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐼𝐴)
2520, 5atbase 36891 . . 3 (𝐼𝐴𝐼 ∈ (Base‘𝐾))
2624, 25syl 17 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝐼 ∈ (Base‘𝐾))
271, 10, 11, 5, 4, 12, 13, 14, 15, 16, 18, 23dalem44 37318 . 2 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 ((𝐺 𝐻) 𝐼))
2820, 10, 11latnlej2l 17753 . 2 ((𝐾 ∈ Lat ∧ (𝑐 ∈ (Base‘𝐾) ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐼 ∈ (Base‘𝐾)) ∧ ¬ 𝑐 ((𝐺 𝐻) 𝐼)) → ¬ 𝑐 (𝐺 𝐻))
293, 7, 22, 26, 27, 28syl131anc 1380 1 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 (𝐺 𝐻))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951   class class class wbr 5035  cfv 6339  (class class class)co 7155  Basecbs 16546  lecple 16635  joincjn 17625  meetcmee 17626  Latclat 17726  Atomscatm 36865  HLchlt 36952  LPlanesclpl 37094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-proset 17609  df-poset 17627  df-plt 17639  df-lub 17655  df-glb 17656  df-join 17657  df-meet 17658  df-p0 17720  df-lat 17727  df-clat 17789  df-oposet 36778  df-ol 36780  df-oml 36781  df-covers 36868  df-ats 36869  df-atl 36900  df-cvlat 36924  df-hlat 36953  df-llines 37100  df-lplanes 37101  df-lvols 37102
This theorem is referenced by:  dalem46  37320  dalem51  37325  dalem52  37326
  Copyright terms: Public domain W3C validator