![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem45 | Structured version Visualization version GIF version |
Description: Lemma for dath 38595. Dummy center of perspectivity π is not on the line πΊπ». (Contributed by NM, 16-Aug-2012.) |
Ref | Expression |
---|---|
dalem.ph | β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) |
dalem.l | β’ β€ = (leβπΎ) |
dalem.j | β’ β¨ = (joinβπΎ) |
dalem.a | β’ π΄ = (AtomsβπΎ) |
dalem.ps | β’ (π β ((π β π΄ β§ π β π΄) β§ Β¬ π β€ π β§ (π β π β§ Β¬ π β€ π β§ πΆ β€ (π β¨ π)))) |
dalem44.m | β’ β§ = (meetβπΎ) |
dalem44.o | β’ π = (LPlanesβπΎ) |
dalem44.y | β’ π = ((π β¨ π) β¨ π ) |
dalem44.z | β’ π = ((π β¨ π) β¨ π) |
dalem44.g | β’ πΊ = ((π β¨ π) β§ (π β¨ π)) |
dalem44.h | β’ π» = ((π β¨ π) β§ (π β¨ π)) |
dalem44.i | β’ πΌ = ((π β¨ π ) β§ (π β¨ π)) |
Ref | Expression |
---|---|
dalem45 | β’ ((π β§ π = π β§ π) β Β¬ π β€ (πΊ β¨ π»)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalem.ph | . . . 4 β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) | |
2 | 1 | dalemkelat 38483 | . . 3 β’ (π β πΎ β Lat) |
3 | 2 | 3ad2ant1 1133 | . 2 β’ ((π β§ π = π β§ π) β πΎ β Lat) |
4 | dalem.ps | . . . 4 β’ (π β ((π β π΄ β§ π β π΄) β§ Β¬ π β€ π β§ (π β π β§ Β¬ π β€ π β§ πΆ β€ (π β¨ π)))) | |
5 | dalem.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
6 | 4, 5 | dalemcceb 38548 | . . 3 β’ (π β π β (BaseβπΎ)) |
7 | 6 | 3ad2ant3 1135 | . 2 β’ ((π β§ π = π β§ π) β π β (BaseβπΎ)) |
8 | 1 | dalemkehl 38482 | . . . 4 β’ (π β πΎ β HL) |
9 | 8 | 3ad2ant1 1133 | . . 3 β’ ((π β§ π = π β§ π) β πΎ β HL) |
10 | dalem.l | . . . 4 β’ β€ = (leβπΎ) | |
11 | dalem.j | . . . 4 β’ β¨ = (joinβπΎ) | |
12 | dalem44.m | . . . 4 β’ β§ = (meetβπΎ) | |
13 | dalem44.o | . . . 4 β’ π = (LPlanesβπΎ) | |
14 | dalem44.y | . . . 4 β’ π = ((π β¨ π) β¨ π ) | |
15 | dalem44.z | . . . 4 β’ π = ((π β¨ π) β¨ π) | |
16 | dalem44.g | . . . 4 β’ πΊ = ((π β¨ π) β§ (π β¨ π)) | |
17 | 1, 10, 11, 5, 4, 12, 13, 14, 15, 16 | dalem23 38555 | . . 3 β’ ((π β§ π = π β§ π) β πΊ β π΄) |
18 | dalem44.h | . . . 4 β’ π» = ((π β¨ π) β§ (π β¨ π)) | |
19 | 1, 10, 11, 5, 4, 12, 13, 14, 15, 18 | dalem29 38560 | . . 3 β’ ((π β§ π = π β§ π) β π» β π΄) |
20 | eqid 2732 | . . . 4 β’ (BaseβπΎ) = (BaseβπΎ) | |
21 | 20, 11, 5 | hlatjcl 38225 | . . 3 β’ ((πΎ β HL β§ πΊ β π΄ β§ π» β π΄) β (πΊ β¨ π») β (BaseβπΎ)) |
22 | 9, 17, 19, 21 | syl3anc 1371 | . 2 β’ ((π β§ π = π β§ π) β (πΊ β¨ π») β (BaseβπΎ)) |
23 | dalem44.i | . . . 4 β’ πΌ = ((π β¨ π ) β§ (π β¨ π)) | |
24 | 1, 10, 11, 5, 4, 12, 13, 14, 15, 23 | dalem34 38565 | . . 3 β’ ((π β§ π = π β§ π) β πΌ β π΄) |
25 | 20, 5 | atbase 38147 | . . 3 β’ (πΌ β π΄ β πΌ β (BaseβπΎ)) |
26 | 24, 25 | syl 17 | . 2 β’ ((π β§ π = π β§ π) β πΌ β (BaseβπΎ)) |
27 | 1, 10, 11, 5, 4, 12, 13, 14, 15, 16, 18, 23 | dalem44 38575 | . 2 β’ ((π β§ π = π β§ π) β Β¬ π β€ ((πΊ β¨ π») β¨ πΌ)) |
28 | 20, 10, 11 | latnlej2l 18409 | . 2 β’ ((πΎ β Lat β§ (π β (BaseβπΎ) β§ (πΊ β¨ π») β (BaseβπΎ) β§ πΌ β (BaseβπΎ)) β§ Β¬ π β€ ((πΊ β¨ π») β¨ πΌ)) β Β¬ π β€ (πΊ β¨ π»)) |
29 | 3, 7, 22, 26, 27, 28 | syl131anc 1383 | 1 β’ ((π β§ π = π β§ π) β Β¬ π β€ (πΊ β¨ π»)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 class class class wbr 5147 βcfv 6540 (class class class)co 7405 Basecbs 17140 lecple 17200 joincjn 18260 meetcmee 18261 Latclat 18380 Atomscatm 38121 HLchlt 38208 LPlanesclpl 38351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-lat 18381 df-clat 18448 df-oposet 38034 df-ol 38036 df-oml 38037 df-covers 38124 df-ats 38125 df-atl 38156 df-cvlat 38180 df-hlat 38209 df-llines 38357 df-lplanes 38358 df-lvols 38359 |
This theorem is referenced by: dalem46 38577 dalem51 38582 dalem52 38583 |
Copyright terms: Public domain | W3C validator |