Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df2ndres Structured version   Visualization version   GIF version

Theorem df2ndres 32690
Description: Definition for a restriction of the 2nd (second member of an ordered pair) function. (Contributed by Thierry Arnoux, 27-Sep-2017.)
Assertion
Ref Expression
df2ndres (2nd ↾ (𝐴 × 𝐵)) = (𝑥𝐴, 𝑦𝐵𝑦)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem df2ndres
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df2nd2 8035 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V))
21reseq1i 5928 . . 3 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} ↾ (𝐴 × 𝐵)) = ((2nd ↾ (V × V)) ↾ (𝐴 × 𝐵))
3 resoprab 7470 . . 3 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} ↾ (𝐴 × 𝐵)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝑦)}
4 resres 5945 . . . 4 ((2nd ↾ (V × V)) ↾ (𝐴 × 𝐵)) = (2nd ↾ ((V × V) ∩ (𝐴 × 𝐵)))
5 incom 4158 . . . . . 6 ((𝐴 × 𝐵) ∩ (V × V)) = ((V × V) ∩ (𝐴 × 𝐵))
6 xpss 5635 . . . . . . 7 (𝐴 × 𝐵) ⊆ (V × V)
7 dfss2 3916 . . . . . . 7 ((𝐴 × 𝐵) ⊆ (V × V) ↔ ((𝐴 × 𝐵) ∩ (V × V)) = (𝐴 × 𝐵))
86, 7mpbi 230 . . . . . 6 ((𝐴 × 𝐵) ∩ (V × V)) = (𝐴 × 𝐵)
95, 8eqtr3i 2758 . . . . 5 ((V × V) ∩ (𝐴 × 𝐵)) = (𝐴 × 𝐵)
109reseq2i 5929 . . . 4 (2nd ↾ ((V × V) ∩ (𝐴 × 𝐵))) = (2nd ↾ (𝐴 × 𝐵))
114, 10eqtri 2756 . . 3 ((2nd ↾ (V × V)) ↾ (𝐴 × 𝐵)) = (2nd ↾ (𝐴 × 𝐵))
122, 3, 113eqtr3ri 2765 . 2 (2nd ↾ (𝐴 × 𝐵)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝑦)}
13 df-mpo 7357 . 2 (𝑥𝐴, 𝑦𝐵𝑦) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝑦)}
1412, 13eqtr4i 2759 1 (2nd ↾ (𝐴 × 𝐵)) = (𝑥𝐴, 𝑦𝐵𝑦)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cin 3897  wss 3898   × cxp 5617  cres 5621  {coprab 7353  cmpo 7354  2nd c2nd 7926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928
This theorem is referenced by:  cnre2csqima  33945
  Copyright terms: Public domain W3C validator