| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df2ndres | Structured version Visualization version GIF version | ||
| Description: Definition for a restriction of the 2nd (second member of an ordered pair) function. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
| Ref | Expression |
|---|---|
| df2ndres | ⊢ (2nd ↾ (𝐴 × 𝐵)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2nd2 8124 | . . . 4 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V)) | |
| 2 | 1 | reseq1i 5993 | . . 3 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦} ↾ (𝐴 × 𝐵)) = ((2nd ↾ (V × V)) ↾ (𝐴 × 𝐵)) |
| 3 | resoprab 7551 | . . 3 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦} ↾ (𝐴 × 𝐵)) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝑦)} | |
| 4 | resres 6010 | . . . 4 ⊢ ((2nd ↾ (V × V)) ↾ (𝐴 × 𝐵)) = (2nd ↾ ((V × V) ∩ (𝐴 × 𝐵))) | |
| 5 | incom 4209 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∩ (V × V)) = ((V × V) ∩ (𝐴 × 𝐵)) | |
| 6 | xpss 5701 | . . . . . . 7 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
| 7 | dfss2 3969 | . . . . . . 7 ⊢ ((𝐴 × 𝐵) ⊆ (V × V) ↔ ((𝐴 × 𝐵) ∩ (V × V)) = (𝐴 × 𝐵)) | |
| 8 | 6, 7 | mpbi 230 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∩ (V × V)) = (𝐴 × 𝐵) |
| 9 | 5, 8 | eqtr3i 2767 | . . . . 5 ⊢ ((V × V) ∩ (𝐴 × 𝐵)) = (𝐴 × 𝐵) |
| 10 | 9 | reseq2i 5994 | . . . 4 ⊢ (2nd ↾ ((V × V) ∩ (𝐴 × 𝐵))) = (2nd ↾ (𝐴 × 𝐵)) |
| 11 | 4, 10 | eqtri 2765 | . . 3 ⊢ ((2nd ↾ (V × V)) ↾ (𝐴 × 𝐵)) = (2nd ↾ (𝐴 × 𝐵)) |
| 12 | 2, 3, 11 | 3eqtr3ri 2774 | . 2 ⊢ (2nd ↾ (𝐴 × 𝐵)) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝑦)} |
| 13 | df-mpo 7436 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑦) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝑦)} | |
| 14 | 12, 13 | eqtr4i 2768 | 1 ⊢ (2nd ↾ (𝐴 × 𝐵)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∩ cin 3950 ⊆ wss 3951 × cxp 5683 ↾ cres 5687 {coprab 7432 ∈ cmpo 7433 2nd c2nd 8013 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fo 6567 df-fv 6569 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 |
| This theorem is referenced by: cnre2csqima 33910 |
| Copyright terms: Public domain | W3C validator |