Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df2ndres Structured version   Visualization version   GIF version

Theorem df2ndres 32682
Description: Definition for a restriction of the 2nd (second member of an ordered pair) function. (Contributed by Thierry Arnoux, 27-Sep-2017.)
Assertion
Ref Expression
df2ndres (2nd ↾ (𝐴 × 𝐵)) = (𝑥𝐴, 𝑦𝐵𝑦)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem df2ndres
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df2nd2 8098 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V))
21reseq1i 5962 . . 3 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} ↾ (𝐴 × 𝐵)) = ((2nd ↾ (V × V)) ↾ (𝐴 × 𝐵))
3 resoprab 7525 . . 3 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} ↾ (𝐴 × 𝐵)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝑦)}
4 resres 5979 . . . 4 ((2nd ↾ (V × V)) ↾ (𝐴 × 𝐵)) = (2nd ↾ ((V × V) ∩ (𝐴 × 𝐵)))
5 incom 4184 . . . . . 6 ((𝐴 × 𝐵) ∩ (V × V)) = ((V × V) ∩ (𝐴 × 𝐵))
6 xpss 5670 . . . . . . 7 (𝐴 × 𝐵) ⊆ (V × V)
7 dfss2 3944 . . . . . . 7 ((𝐴 × 𝐵) ⊆ (V × V) ↔ ((𝐴 × 𝐵) ∩ (V × V)) = (𝐴 × 𝐵))
86, 7mpbi 230 . . . . . 6 ((𝐴 × 𝐵) ∩ (V × V)) = (𝐴 × 𝐵)
95, 8eqtr3i 2760 . . . . 5 ((V × V) ∩ (𝐴 × 𝐵)) = (𝐴 × 𝐵)
109reseq2i 5963 . . . 4 (2nd ↾ ((V × V) ∩ (𝐴 × 𝐵))) = (2nd ↾ (𝐴 × 𝐵))
114, 10eqtri 2758 . . 3 ((2nd ↾ (V × V)) ↾ (𝐴 × 𝐵)) = (2nd ↾ (𝐴 × 𝐵))
122, 3, 113eqtr3ri 2767 . 2 (2nd ↾ (𝐴 × 𝐵)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝑦)}
13 df-mpo 7410 . 2 (𝑥𝐴, 𝑦𝐵𝑦) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝑦)}
1412, 13eqtr4i 2761 1 (2nd ↾ (𝐴 × 𝐵)) = (𝑥𝐴, 𝑦𝐵𝑦)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cin 3925  wss 3926   × cxp 5652  cres 5656  {coprab 7406  cmpo 7407  2nd c2nd 7987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fo 6537  df-fv 6539  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989
This theorem is referenced by:  cnre2csqima  33942
  Copyright terms: Public domain W3C validator