| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df2ndres | Structured version Visualization version GIF version | ||
| Description: Definition for a restriction of the 2nd (second member of an ordered pair) function. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
| Ref | Expression |
|---|---|
| df2ndres | ⊢ (2nd ↾ (𝐴 × 𝐵)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2nd2 8035 | . . . 4 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V)) | |
| 2 | 1 | reseq1i 5928 | . . 3 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦} ↾ (𝐴 × 𝐵)) = ((2nd ↾ (V × V)) ↾ (𝐴 × 𝐵)) |
| 3 | resoprab 7470 | . . 3 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦} ↾ (𝐴 × 𝐵)) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝑦)} | |
| 4 | resres 5945 | . . . 4 ⊢ ((2nd ↾ (V × V)) ↾ (𝐴 × 𝐵)) = (2nd ↾ ((V × V) ∩ (𝐴 × 𝐵))) | |
| 5 | incom 4158 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∩ (V × V)) = ((V × V) ∩ (𝐴 × 𝐵)) | |
| 6 | xpss 5635 | . . . . . . 7 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
| 7 | dfss2 3916 | . . . . . . 7 ⊢ ((𝐴 × 𝐵) ⊆ (V × V) ↔ ((𝐴 × 𝐵) ∩ (V × V)) = (𝐴 × 𝐵)) | |
| 8 | 6, 7 | mpbi 230 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∩ (V × V)) = (𝐴 × 𝐵) |
| 9 | 5, 8 | eqtr3i 2758 | . . . . 5 ⊢ ((V × V) ∩ (𝐴 × 𝐵)) = (𝐴 × 𝐵) |
| 10 | 9 | reseq2i 5929 | . . . 4 ⊢ (2nd ↾ ((V × V) ∩ (𝐴 × 𝐵))) = (2nd ↾ (𝐴 × 𝐵)) |
| 11 | 4, 10 | eqtri 2756 | . . 3 ⊢ ((2nd ↾ (V × V)) ↾ (𝐴 × 𝐵)) = (2nd ↾ (𝐴 × 𝐵)) |
| 12 | 2, 3, 11 | 3eqtr3ri 2765 | . 2 ⊢ (2nd ↾ (𝐴 × 𝐵)) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝑦)} |
| 13 | df-mpo 7357 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑦) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝑦)} | |
| 14 | 12, 13 | eqtr4i 2759 | 1 ⊢ (2nd ↾ (𝐴 × 𝐵)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∩ cin 3897 ⊆ wss 3898 × cxp 5617 ↾ cres 5621 {coprab 7353 ∈ cmpo 7354 2nd c2nd 7926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fo 6492 df-fv 6494 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 |
| This theorem is referenced by: cnre2csqima 33945 |
| Copyright terms: Public domain | W3C validator |