Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df1stres Structured version   Visualization version   GIF version

Theorem df1stres 30463
Description: Definition for a restriction of the 1st (first member of an ordered pair) function. (Contributed by Thierry Arnoux, 27-Sep-2017.)
Assertion
Ref Expression
df1stres (1st ↾ (𝐴 × 𝐵)) = (𝑥𝐴, 𝑦𝐵𝑥)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem df1stres
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df1st2 7776 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} = (1st ↾ (V × V))
21reseq1i 5814 . . 3 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} ↾ (𝐴 × 𝐵)) = ((1st ↾ (V × V)) ↾ (𝐴 × 𝐵))
3 resoprab 7249 . . 3 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} ↾ (𝐴 × 𝐵)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝑥)}
4 resres 5831 . . . 4 ((1st ↾ (V × V)) ↾ (𝐴 × 𝐵)) = (1st ↾ ((V × V) ∩ (𝐴 × 𝐵)))
5 incom 4128 . . . . . 6 ((𝐴 × 𝐵) ∩ (V × V)) = ((V × V) ∩ (𝐴 × 𝐵))
6 xpss 5535 . . . . . . 7 (𝐴 × 𝐵) ⊆ (V × V)
7 df-ss 3898 . . . . . . 7 ((𝐴 × 𝐵) ⊆ (V × V) ↔ ((𝐴 × 𝐵) ∩ (V × V)) = (𝐴 × 𝐵))
86, 7mpbi 233 . . . . . 6 ((𝐴 × 𝐵) ∩ (V × V)) = (𝐴 × 𝐵)
95, 8eqtr3i 2823 . . . . 5 ((V × V) ∩ (𝐴 × 𝐵)) = (𝐴 × 𝐵)
109reseq2i 5815 . . . 4 (1st ↾ ((V × V) ∩ (𝐴 × 𝐵))) = (1st ↾ (𝐴 × 𝐵))
114, 10eqtri 2821 . . 3 ((1st ↾ (V × V)) ↾ (𝐴 × 𝐵)) = (1st ↾ (𝐴 × 𝐵))
122, 3, 113eqtr3ri 2830 . 2 (1st ↾ (𝐴 × 𝐵)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝑥)}
13 df-mpo 7140 . 2 (𝑥𝐴, 𝑦𝐵𝑥) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝑥)}
1412, 13eqtr4i 2824 1 (1st ↾ (𝐴 × 𝐵)) = (𝑥𝐴, 𝑦𝐵𝑥)
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  cin 3880  wss 3881   × cxp 5517  cres 5521  {coprab 7136  cmpo 7137  1st c1st 7669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fo 6330  df-fv 6332  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672
This theorem is referenced by:  cnre2csqima  31264
  Copyright terms: Public domain W3C validator