| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df1stres | Structured version Visualization version GIF version | ||
| Description: Definition for a restriction of the 1st (first member of an ordered pair) function. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
| Ref | Expression |
|---|---|
| df1stres | ⊢ (1st ↾ (𝐴 × 𝐵)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1st2 8077 | . . . 4 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} = (1st ↾ (V × V)) | |
| 2 | 1 | reseq1i 5946 | . . 3 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} ↾ (𝐴 × 𝐵)) = ((1st ↾ (V × V)) ↾ (𝐴 × 𝐵)) |
| 3 | resoprab 7507 | . . 3 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} ↾ (𝐴 × 𝐵)) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝑥)} | |
| 4 | resres 5963 | . . . 4 ⊢ ((1st ↾ (V × V)) ↾ (𝐴 × 𝐵)) = (1st ↾ ((V × V) ∩ (𝐴 × 𝐵))) | |
| 5 | incom 4172 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∩ (V × V)) = ((V × V) ∩ (𝐴 × 𝐵)) | |
| 6 | xpss 5654 | . . . . . . 7 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
| 7 | dfss2 3932 | . . . . . . 7 ⊢ ((𝐴 × 𝐵) ⊆ (V × V) ↔ ((𝐴 × 𝐵) ∩ (V × V)) = (𝐴 × 𝐵)) | |
| 8 | 6, 7 | mpbi 230 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∩ (V × V)) = (𝐴 × 𝐵) |
| 9 | 5, 8 | eqtr3i 2754 | . . . . 5 ⊢ ((V × V) ∩ (𝐴 × 𝐵)) = (𝐴 × 𝐵) |
| 10 | 9 | reseq2i 5947 | . . . 4 ⊢ (1st ↾ ((V × V) ∩ (𝐴 × 𝐵))) = (1st ↾ (𝐴 × 𝐵)) |
| 11 | 4, 10 | eqtri 2752 | . . 3 ⊢ ((1st ↾ (V × V)) ↾ (𝐴 × 𝐵)) = (1st ↾ (𝐴 × 𝐵)) |
| 12 | 2, 3, 11 | 3eqtr3ri 2761 | . 2 ⊢ (1st ↾ (𝐴 × 𝐵)) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝑥)} |
| 13 | df-mpo 7392 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑥) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝑥)} | |
| 14 | 12, 13 | eqtr4i 2755 | 1 ⊢ (1st ↾ (𝐴 × 𝐵)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 × cxp 5636 ↾ cres 5640 {coprab 7388 ∈ cmpo 7389 1st c1st 7966 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-fv 6519 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 |
| This theorem is referenced by: cnre2csqima 33901 |
| Copyright terms: Public domain | W3C validator |