|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df1stres | Structured version Visualization version GIF version | ||
| Description: Definition for a restriction of the 1st (first member of an ordered pair) function. (Contributed by Thierry Arnoux, 27-Sep-2017.) | 
| Ref | Expression | 
|---|---|
| df1stres | ⊢ (1st ↾ (𝐴 × 𝐵)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑥) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df1st2 8124 | . . . 4 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} = (1st ↾ (V × V)) | |
| 2 | 1 | reseq1i 5992 | . . 3 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} ↾ (𝐴 × 𝐵)) = ((1st ↾ (V × V)) ↾ (𝐴 × 𝐵)) | 
| 3 | resoprab 7552 | . . 3 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} ↾ (𝐴 × 𝐵)) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝑥)} | |
| 4 | resres 6009 | . . . 4 ⊢ ((1st ↾ (V × V)) ↾ (𝐴 × 𝐵)) = (1st ↾ ((V × V) ∩ (𝐴 × 𝐵))) | |
| 5 | incom 4208 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∩ (V × V)) = ((V × V) ∩ (𝐴 × 𝐵)) | |
| 6 | xpss 5700 | . . . . . . 7 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
| 7 | dfss2 3968 | . . . . . . 7 ⊢ ((𝐴 × 𝐵) ⊆ (V × V) ↔ ((𝐴 × 𝐵) ∩ (V × V)) = (𝐴 × 𝐵)) | |
| 8 | 6, 7 | mpbi 230 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∩ (V × V)) = (𝐴 × 𝐵) | 
| 9 | 5, 8 | eqtr3i 2766 | . . . . 5 ⊢ ((V × V) ∩ (𝐴 × 𝐵)) = (𝐴 × 𝐵) | 
| 10 | 9 | reseq2i 5993 | . . . 4 ⊢ (1st ↾ ((V × V) ∩ (𝐴 × 𝐵))) = (1st ↾ (𝐴 × 𝐵)) | 
| 11 | 4, 10 | eqtri 2764 | . . 3 ⊢ ((1st ↾ (V × V)) ↾ (𝐴 × 𝐵)) = (1st ↾ (𝐴 × 𝐵)) | 
| 12 | 2, 3, 11 | 3eqtr3ri 2773 | . 2 ⊢ (1st ↾ (𝐴 × 𝐵)) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝑥)} | 
| 13 | df-mpo 7437 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑥) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝑥)} | |
| 14 | 12, 13 | eqtr4i 2767 | 1 ⊢ (1st ↾ (𝐴 × 𝐵)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑥) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3479 ∩ cin 3949 ⊆ wss 3950 × cxp 5682 ↾ cres 5686 {coprab 7433 ∈ cmpo 7434 1st c1st 8013 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fo 6566 df-fv 6568 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 | 
| This theorem is referenced by: cnre2csqima 33911 | 
| Copyright terms: Public domain | W3C validator |