Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df1stres | Structured version Visualization version GIF version |
Description: Definition for a restriction of the 1st (first member of an ordered pair) function. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
Ref | Expression |
---|---|
df1stres | ⊢ (1st ↾ (𝐴 × 𝐵)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1st2 7831 | . . . 4 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} = (1st ↾ (V × V)) | |
2 | 1 | reseq1i 5831 | . . 3 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} ↾ (𝐴 × 𝐵)) = ((1st ↾ (V × V)) ↾ (𝐴 × 𝐵)) |
3 | resoprab 7296 | . . 3 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} ↾ (𝐴 × 𝐵)) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝑥)} | |
4 | resres 5848 | . . . 4 ⊢ ((1st ↾ (V × V)) ↾ (𝐴 × 𝐵)) = (1st ↾ ((V × V) ∩ (𝐴 × 𝐵))) | |
5 | incom 4101 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∩ (V × V)) = ((V × V) ∩ (𝐴 × 𝐵)) | |
6 | xpss 5551 | . . . . . . 7 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
7 | df-ss 3870 | . . . . . . 7 ⊢ ((𝐴 × 𝐵) ⊆ (V × V) ↔ ((𝐴 × 𝐵) ∩ (V × V)) = (𝐴 × 𝐵)) | |
8 | 6, 7 | mpbi 233 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∩ (V × V)) = (𝐴 × 𝐵) |
9 | 5, 8 | eqtr3i 2764 | . . . . 5 ⊢ ((V × V) ∩ (𝐴 × 𝐵)) = (𝐴 × 𝐵) |
10 | 9 | reseq2i 5832 | . . . 4 ⊢ (1st ↾ ((V × V) ∩ (𝐴 × 𝐵))) = (1st ↾ (𝐴 × 𝐵)) |
11 | 4, 10 | eqtri 2762 | . . 3 ⊢ ((1st ↾ (V × V)) ↾ (𝐴 × 𝐵)) = (1st ↾ (𝐴 × 𝐵)) |
12 | 2, 3, 11 | 3eqtr3ri 2771 | . 2 ⊢ (1st ↾ (𝐴 × 𝐵)) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝑥)} |
13 | df-mpo 7187 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑥) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝑥)} | |
14 | 12, 13 | eqtr4i 2765 | 1 ⊢ (1st ↾ (𝐴 × 𝐵)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1542 ∈ wcel 2114 Vcvv 3400 ∩ cin 3852 ⊆ wss 3853 × cxp 5533 ↾ cres 5537 {coprab 7183 ∈ cmpo 7184 1st c1st 7724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pr 5306 ax-un 7491 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3402 df-sbc 3686 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-fo 6355 df-fv 6357 df-oprab 7186 df-mpo 7187 df-1st 7726 df-2nd 7727 |
This theorem is referenced by: cnre2csqima 31445 |
Copyright terms: Public domain | W3C validator |