Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df1stres Structured version   Visualization version   GIF version

Theorem df1stres 32193
Description: Definition for a restriction of the 1st (first member of an ordered pair) function. (Contributed by Thierry Arnoux, 27-Sep-2017.)
Assertion
Ref Expression
df1stres (1st ↾ (𝐴 × 𝐵)) = (𝑥𝐴, 𝑦𝐵𝑥)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem df1stres
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df1st2 8088 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} = (1st ↾ (V × V))
21reseq1i 5977 . . 3 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} ↾ (𝐴 × 𝐵)) = ((1st ↾ (V × V)) ↾ (𝐴 × 𝐵))
3 resoprab 7529 . . 3 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} ↾ (𝐴 × 𝐵)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝑥)}
4 resres 5994 . . . 4 ((1st ↾ (V × V)) ↾ (𝐴 × 𝐵)) = (1st ↾ ((V × V) ∩ (𝐴 × 𝐵)))
5 incom 4201 . . . . . 6 ((𝐴 × 𝐵) ∩ (V × V)) = ((V × V) ∩ (𝐴 × 𝐵))
6 xpss 5692 . . . . . . 7 (𝐴 × 𝐵) ⊆ (V × V)
7 df-ss 3965 . . . . . . 7 ((𝐴 × 𝐵) ⊆ (V × V) ↔ ((𝐴 × 𝐵) ∩ (V × V)) = (𝐴 × 𝐵))
86, 7mpbi 229 . . . . . 6 ((𝐴 × 𝐵) ∩ (V × V)) = (𝐴 × 𝐵)
95, 8eqtr3i 2761 . . . . 5 ((V × V) ∩ (𝐴 × 𝐵)) = (𝐴 × 𝐵)
109reseq2i 5978 . . . 4 (1st ↾ ((V × V) ∩ (𝐴 × 𝐵))) = (1st ↾ (𝐴 × 𝐵))
114, 10eqtri 2759 . . 3 ((1st ↾ (V × V)) ↾ (𝐴 × 𝐵)) = (1st ↾ (𝐴 × 𝐵))
122, 3, 113eqtr3ri 2768 . 2 (1st ↾ (𝐴 × 𝐵)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝑥)}
13 df-mpo 7417 . 2 (𝑥𝐴, 𝑦𝐵𝑥) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝑥)}
1412, 13eqtr4i 2762 1 (1st ↾ (𝐴 × 𝐵)) = (𝑥𝐴, 𝑦𝐵𝑥)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2105  Vcvv 3473  cin 3947  wss 3948   × cxp 5674  cres 5678  {coprab 7413  cmpo 7414  1st c1st 7977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fo 6549  df-fv 6551  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980
This theorem is referenced by:  cnre2csqima  33190
  Copyright terms: Public domain W3C validator