![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df1stres | Structured version Visualization version GIF version |
Description: Definition for a restriction of the 1st (first member of an ordered pair) function. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
Ref | Expression |
---|---|
df1stres | ⊢ (1st ↾ (𝐴 × 𝐵)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1st2 8088 | . . . 4 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} = (1st ↾ (V × V)) | |
2 | 1 | reseq1i 5977 | . . 3 ⊢ ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} ↾ (𝐴 × 𝐵)) = ((1st ↾ (V × V)) ↾ (𝐴 × 𝐵)) |
3 | resoprab 7529 | . . 3 ⊢ ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} ↾ (𝐴 × 𝐵)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝑥)} | |
4 | resres 5994 | . . . 4 ⊢ ((1st ↾ (V × V)) ↾ (𝐴 × 𝐵)) = (1st ↾ ((V × V) ∩ (𝐴 × 𝐵))) | |
5 | incom 4201 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∩ (V × V)) = ((V × V) ∩ (𝐴 × 𝐵)) | |
6 | xpss 5692 | . . . . . . 7 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
7 | df-ss 3965 | . . . . . . 7 ⊢ ((𝐴 × 𝐵) ⊆ (V × V) ↔ ((𝐴 × 𝐵) ∩ (V × V)) = (𝐴 × 𝐵)) | |
8 | 6, 7 | mpbi 229 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∩ (V × V)) = (𝐴 × 𝐵) |
9 | 5, 8 | eqtr3i 2761 | . . . . 5 ⊢ ((V × V) ∩ (𝐴 × 𝐵)) = (𝐴 × 𝐵) |
10 | 9 | reseq2i 5978 | . . . 4 ⊢ (1st ↾ ((V × V) ∩ (𝐴 × 𝐵))) = (1st ↾ (𝐴 × 𝐵)) |
11 | 4, 10 | eqtri 2759 | . . 3 ⊢ ((1st ↾ (V × V)) ↾ (𝐴 × 𝐵)) = (1st ↾ (𝐴 × 𝐵)) |
12 | 2, 3, 11 | 3eqtr3ri 2768 | . 2 ⊢ (1st ↾ (𝐴 × 𝐵)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝑥)} |
13 | df-mpo 7417 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑥) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝑥)} | |
14 | 12, 13 | eqtr4i 2762 | 1 ⊢ (1st ↾ (𝐴 × 𝐵)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∩ cin 3947 ⊆ wss 3948 × cxp 5674 ↾ cres 5678 {coprab 7413 ∈ cmpo 7414 1st c1st 7977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 |
This theorem is referenced by: cnre2csqima 33190 |
Copyright terms: Public domain | W3C validator |