Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isfin1-4 | Structured version Visualization version GIF version |
Description: A set is I-finite iff every system of subsets contains a minimal subset. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
isfin1-4 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ [⊊] Fr 𝒫 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfin1-3 9899 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ ◡ [⊊] Fr 𝒫 𝐴)) | |
2 | eqid 2739 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) | |
3 | 2 | compssiso 9887 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) Isom [⊊] , ◡ [⊊] (𝒫 𝐴, 𝒫 𝐴)) |
4 | isofr 7121 | . . 3 ⊢ ((𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) Isom [⊊] , ◡ [⊊] (𝒫 𝐴, 𝒫 𝐴) → ( [⊊] Fr 𝒫 𝐴 ↔ ◡ [⊊] Fr 𝒫 𝐴)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → ( [⊊] Fr 𝒫 𝐴 ↔ ◡ [⊊] Fr 𝒫 𝐴)) |
6 | 1, 5 | bitr4d 285 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ [⊊] Fr 𝒫 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∈ wcel 2114 ∖ cdif 3850 𝒫 cpw 4498 ↦ cmpt 5120 Fr wfr 5490 ◡ccnv 5534 Isom wiso 6351 [⊊] crpss 7479 Fincfn 8568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7492 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-ord 6186 df-on 6187 df-lim 6188 df-suc 6189 df-iota 6308 df-fun 6352 df-fn 6353 df-f 6354 df-f1 6355 df-fo 6356 df-f1o 6357 df-fv 6358 df-isom 6359 df-rpss 7480 df-om 7613 df-1o 8144 df-en 8569 df-fin 8572 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |