![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfin1-4 | Structured version Visualization version GIF version |
Description: A set is I-finite iff every system of subsets contains a minimal subset. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
isfin1-4 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ [⊊] Fr 𝒫 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfin1-3 10424 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ ◡ [⊊] Fr 𝒫 𝐴)) | |
2 | eqid 2735 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) | |
3 | 2 | compssiso 10412 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) Isom [⊊] , ◡ [⊊] (𝒫 𝐴, 𝒫 𝐴)) |
4 | isofr 7362 | . . 3 ⊢ ((𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) Isom [⊊] , ◡ [⊊] (𝒫 𝐴, 𝒫 𝐴) → ( [⊊] Fr 𝒫 𝐴 ↔ ◡ [⊊] Fr 𝒫 𝐴)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → ( [⊊] Fr 𝒫 𝐴 ↔ ◡ [⊊] Fr 𝒫 𝐴)) |
6 | 1, 5 | bitr4d 282 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ [⊊] Fr 𝒫 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2106 ∖ cdif 3960 𝒫 cpw 4605 ↦ cmpt 5231 Fr wfr 5638 ◡ccnv 5688 Isom wiso 6564 [⊊] crpss 7741 Fincfn 8984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-rpss 7742 df-om 7888 df-1o 8505 df-en 8985 df-dom 8986 df-fin 8988 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |