![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfin1-4 | Structured version Visualization version GIF version |
Description: A set is I-finite iff every system of subsets contains a minimal subset. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
isfin1-4 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ [⊊] Fr 𝒫 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfin1-3 10383 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ ◡ [⊊] Fr 𝒫 𝐴)) | |
2 | eqid 2726 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) | |
3 | 2 | compssiso 10371 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) Isom [⊊] , ◡ [⊊] (𝒫 𝐴, 𝒫 𝐴)) |
4 | isofr 7335 | . . 3 ⊢ ((𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) Isom [⊊] , ◡ [⊊] (𝒫 𝐴, 𝒫 𝐴) → ( [⊊] Fr 𝒫 𝐴 ↔ ◡ [⊊] Fr 𝒫 𝐴)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → ( [⊊] Fr 𝒫 𝐴 ↔ ◡ [⊊] Fr 𝒫 𝐴)) |
6 | 1, 5 | bitr4d 282 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ [⊊] Fr 𝒫 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2098 ∖ cdif 3940 𝒫 cpw 4597 ↦ cmpt 5224 Fr wfr 5621 ◡ccnv 5668 Isom wiso 6538 [⊊] crpss 7709 Fincfn 8941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-rpss 7710 df-om 7853 df-1o 8467 df-en 8942 df-fin 8945 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |