MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin1-4 Structured version   Visualization version   GIF version

Theorem isfin1-4 10347
Description: A set is I-finite iff every system of subsets contains a minimal subset. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
isfin1-4 (𝐴𝑉 → (𝐴 ∈ Fin ↔ [] Fr 𝒫 𝐴))

Proof of Theorem isfin1-4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfin1-3 10346 . 2 (𝐴𝑉 → (𝐴 ∈ Fin ↔ [] Fr 𝒫 𝐴))
2 eqid 2730 . . . 4 (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥)) = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
32compssiso 10334 . . 3 (𝐴𝑉 → (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥)) Isom [] , [] (𝒫 𝐴, 𝒫 𝐴))
4 isofr 7320 . . 3 ((𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥)) Isom [] , [] (𝒫 𝐴, 𝒫 𝐴) → ( [] Fr 𝒫 𝐴 [] Fr 𝒫 𝐴))
53, 4syl 17 . 2 (𝐴𝑉 → ( [] Fr 𝒫 𝐴 [] Fr 𝒫 𝐴))
61, 5bitr4d 282 1 (𝐴𝑉 → (𝐴 ∈ Fin ↔ [] Fr 𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  cdif 3914  𝒫 cpw 4566  cmpt 5191   Fr wfr 5591  ccnv 5640   Isom wiso 6515   [] crpss 7701  Fincfn 8921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-rpss 7702  df-om 7846  df-1o 8437  df-en 8922  df-dom 8923  df-fin 8925
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator