MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin1-4 Structured version   Visualization version   GIF version

Theorem isfin1-4 10425
Description: A set is I-finite iff every system of subsets contains a minimal subset. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
isfin1-4 (𝐴𝑉 → (𝐴 ∈ Fin ↔ [] Fr 𝒫 𝐴))

Proof of Theorem isfin1-4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfin1-3 10424 . 2 (𝐴𝑉 → (𝐴 ∈ Fin ↔ [] Fr 𝒫 𝐴))
2 eqid 2735 . . . 4 (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥)) = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
32compssiso 10412 . . 3 (𝐴𝑉 → (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥)) Isom [] , [] (𝒫 𝐴, 𝒫 𝐴))
4 isofr 7362 . . 3 ((𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥)) Isom [] , [] (𝒫 𝐴, 𝒫 𝐴) → ( [] Fr 𝒫 𝐴 [] Fr 𝒫 𝐴))
53, 4syl 17 . 2 (𝐴𝑉 → ( [] Fr 𝒫 𝐴 [] Fr 𝒫 𝐴))
61, 5bitr4d 282 1 (𝐴𝑉 → (𝐴 ∈ Fin ↔ [] Fr 𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2106  cdif 3960  𝒫 cpw 4605  cmpt 5231   Fr wfr 5638  ccnv 5688   Isom wiso 6564   [] crpss 7741  Fincfn 8984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-rpss 7742  df-om 7888  df-1o 8505  df-en 8985  df-dom 8986  df-fin 8988
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator