Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfgrp2e | Structured version Visualization version GIF version |
Description: Alternate definition of a group as a set with a closed, associative operation, a left identity and a left inverse for each element. Alternate definition in [Lang] p. 7. (Contributed by NM, 10-Oct-2006.) (Revised by AV, 28-Aug-2021.) |
Ref | Expression |
---|---|
dfgrp2.b | ⊢ 𝐵 = (Base‘𝐺) |
dfgrp2.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
dfgrp2e | ⊢ (𝐺 ∈ Grp ↔ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfgrp2.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | dfgrp2.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | 1, 2 | dfgrp2 18195 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛))) |
4 | ax-1 6 | . . . . . . 7 ⊢ (𝐺 ∈ V → (𝑛 ∈ 𝐵 → 𝐺 ∈ V)) | |
5 | fvprc 6650 | . . . . . . . 8 ⊢ (¬ 𝐺 ∈ V → (Base‘𝐺) = ∅) | |
6 | 1 | eleq2i 2843 | . . . . . . . . 9 ⊢ (𝑛 ∈ 𝐵 ↔ 𝑛 ∈ (Base‘𝐺)) |
7 | eleq2 2840 | . . . . . . . . . 10 ⊢ ((Base‘𝐺) = ∅ → (𝑛 ∈ (Base‘𝐺) ↔ 𝑛 ∈ ∅)) | |
8 | noel 4230 | . . . . . . . . . . 11 ⊢ ¬ 𝑛 ∈ ∅ | |
9 | 8 | pm2.21i 119 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ∅ → 𝐺 ∈ V) |
10 | 7, 9 | syl6bi 256 | . . . . . . . . 9 ⊢ ((Base‘𝐺) = ∅ → (𝑛 ∈ (Base‘𝐺) → 𝐺 ∈ V)) |
11 | 6, 10 | syl5bi 245 | . . . . . . . 8 ⊢ ((Base‘𝐺) = ∅ → (𝑛 ∈ 𝐵 → 𝐺 ∈ V)) |
12 | 5, 11 | syl 17 | . . . . . . 7 ⊢ (¬ 𝐺 ∈ V → (𝑛 ∈ 𝐵 → 𝐺 ∈ V)) |
13 | 4, 12 | pm2.61i 185 | . . . . . 6 ⊢ (𝑛 ∈ 𝐵 → 𝐺 ∈ V) |
14 | 13 | a1d 25 | . . . . 5 ⊢ (𝑛 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) → 𝐺 ∈ V)) |
15 | 14 | rexlimiv 3204 | . . . 4 ⊢ (∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) → 𝐺 ∈ V) |
16 | 1, 2 | issgrpv 17969 | . . . 4 ⊢ (𝐺 ∈ V → (𝐺 ∈ Smgrp ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))))) |
17 | 15, 16 | syl 17 | . . 3 ⊢ (∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) → (𝐺 ∈ Smgrp ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))))) |
18 | 17 | pm5.32ri 579 | . 2 ⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ↔ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛))) |
19 | 3, 18 | bitri 278 | 1 ⊢ (𝐺 ∈ Grp ↔ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ∃wrex 3071 Vcvv 3409 ∅c0 4225 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 +gcplusg 16623 Smgrpcsgrp 17966 Grpcgrp 18169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-iota 6294 df-fun 6337 df-fv 6343 df-riota 7108 df-ov 7153 df-0g 16773 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-grp 18172 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |