MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfgrp2e Structured version   Visualization version   GIF version

Theorem dfgrp2e 18871
Description: Alternate definition of a group as a set with a closed, associative operation, a left identity and a left inverse for each element. Alternate definition in [Lang] p. 7. (Contributed by NM, 10-Oct-2006.) (Revised by AV, 28-Aug-2021.)
Hypotheses
Ref Expression
dfgrp2.b 𝐵 = (Base‘𝐺)
dfgrp2.p + = (+g𝐺)
Assertion
Ref Expression
dfgrp2e (𝐺 ∈ Grp ↔ (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)))
Distinct variable groups:   𝐵,𝑖,𝑛,𝑥   𝑖,𝐺,𝑛,𝑥   + ,𝑖,𝑛,𝑥   𝑦,𝐵,𝑧,𝑥   𝑦,𝐺,𝑧   𝑦, + ,𝑧

Proof of Theorem dfgrp2e
StepHypRef Expression
1 dfgrp2.b . . 3 𝐵 = (Base‘𝐺)
2 dfgrp2.p . . 3 + = (+g𝐺)
31, 2dfgrp2 18870 . 2 (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)))
4 ax-1 6 . . . . . . 7 (𝐺 ∈ V → (𝑛𝐵𝐺 ∈ V))
5 fvprc 6809 . . . . . . . 8 𝐺 ∈ V → (Base‘𝐺) = ∅)
61eleq2i 2823 . . . . . . . . 9 (𝑛𝐵𝑛 ∈ (Base‘𝐺))
7 eleq2 2820 . . . . . . . . . 10 ((Base‘𝐺) = ∅ → (𝑛 ∈ (Base‘𝐺) ↔ 𝑛 ∈ ∅))
8 noel 4283 . . . . . . . . . . 11 ¬ 𝑛 ∈ ∅
98pm2.21i 119 . . . . . . . . . 10 (𝑛 ∈ ∅ → 𝐺 ∈ V)
107, 9biimtrdi 253 . . . . . . . . 9 ((Base‘𝐺) = ∅ → (𝑛 ∈ (Base‘𝐺) → 𝐺 ∈ V))
116, 10biimtrid 242 . . . . . . . 8 ((Base‘𝐺) = ∅ → (𝑛𝐵𝐺 ∈ V))
125, 11syl 17 . . . . . . 7 𝐺 ∈ V → (𝑛𝐵𝐺 ∈ V))
134, 12pm2.61i 182 . . . . . 6 (𝑛𝐵𝐺 ∈ V)
1413a1d 25 . . . . 5 (𝑛𝐵 → (∀𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛) → 𝐺 ∈ V))
1514rexlimiv 3126 . . . 4 (∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛) → 𝐺 ∈ V)
161, 2issgrpv 18624 . . . 4 (𝐺 ∈ V → (𝐺 ∈ Smgrp ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))))
1715, 16syl 17 . . 3 (∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛) → (𝐺 ∈ Smgrp ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))))
1817pm5.32ri 575 . 2 ((𝐺 ∈ Smgrp ∧ ∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)) ↔ (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)))
193, 18bitri 275 1 (𝐺 ∈ Grp ↔ (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  c0 4278  cfv 6476  (class class class)co 7341  Basecbs 17115  +gcplusg 17156  Smgrpcsgrp 18621  Grpcgrp 18841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484  df-riota 7298  df-ov 7344  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator