MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfgrp2e Structured version   Visualization version   GIF version

Theorem dfgrp2e 18121
Description: Alternate definition of a group as a set with a closed, associative operation, a left identity and a left inverse for each element. Alternate definition in [Lang] p. 7. (Contributed by NM, 10-Oct-2006.) (Revised by AV, 28-Aug-2021.)
Hypotheses
Ref Expression
dfgrp2.b 𝐵 = (Base‘𝐺)
dfgrp2.p + = (+g𝐺)
Assertion
Ref Expression
dfgrp2e (𝐺 ∈ Grp ↔ (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)))
Distinct variable groups:   𝐵,𝑖,𝑛,𝑥   𝑖,𝐺,𝑛,𝑥   + ,𝑖,𝑛,𝑥   𝑦,𝐵,𝑧,𝑥   𝑦,𝐺,𝑧   𝑦, + ,𝑧

Proof of Theorem dfgrp2e
StepHypRef Expression
1 dfgrp2.b . . 3 𝐵 = (Base‘𝐺)
2 dfgrp2.p . . 3 + = (+g𝐺)
31, 2dfgrp2 18120 . 2 (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)))
4 ax-1 6 . . . . . . 7 (𝐺 ∈ V → (𝑛𝐵𝐺 ∈ V))
5 fvprc 6638 . . . . . . . 8 𝐺 ∈ V → (Base‘𝐺) = ∅)
61eleq2i 2881 . . . . . . . . 9 (𝑛𝐵𝑛 ∈ (Base‘𝐺))
7 eleq2 2878 . . . . . . . . . 10 ((Base‘𝐺) = ∅ → (𝑛 ∈ (Base‘𝐺) ↔ 𝑛 ∈ ∅))
8 noel 4247 . . . . . . . . . . 11 ¬ 𝑛 ∈ ∅
98pm2.21i 119 . . . . . . . . . 10 (𝑛 ∈ ∅ → 𝐺 ∈ V)
107, 9syl6bi 256 . . . . . . . . 9 ((Base‘𝐺) = ∅ → (𝑛 ∈ (Base‘𝐺) → 𝐺 ∈ V))
116, 10syl5bi 245 . . . . . . . 8 ((Base‘𝐺) = ∅ → (𝑛𝐵𝐺 ∈ V))
125, 11syl 17 . . . . . . 7 𝐺 ∈ V → (𝑛𝐵𝐺 ∈ V))
134, 12pm2.61i 185 . . . . . 6 (𝑛𝐵𝐺 ∈ V)
1413a1d 25 . . . . 5 (𝑛𝐵 → (∀𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛) → 𝐺 ∈ V))
1514rexlimiv 3239 . . . 4 (∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛) → 𝐺 ∈ V)
161, 2issgrpv 17895 . . . 4 (𝐺 ∈ V → (𝐺 ∈ Smgrp ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))))
1715, 16syl 17 . . 3 (∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛) → (𝐺 ∈ Smgrp ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))))
1817pm5.32ri 579 . 2 ((𝐺 ∈ Smgrp ∧ ∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)) ↔ (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)))
193, 18bitri 278 1 (𝐺 ∈ Grp ↔ (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  Vcvv 3441  c0 4243  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  Smgrpcsgrp 17892  Grpcgrp 18095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-riota 7093  df-ov 7138  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator