| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfgrp2e | Structured version Visualization version GIF version | ||
| Description: Alternate definition of a group as a set with a closed, associative operation, a left identity and a left inverse for each element. Alternate definition in [Lang] p. 7. (Contributed by NM, 10-Oct-2006.) (Revised by AV, 28-Aug-2021.) |
| Ref | Expression |
|---|---|
| dfgrp2.b | ⊢ 𝐵 = (Base‘𝐺) |
| dfgrp2.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| dfgrp2e | ⊢ (𝐺 ∈ Grp ↔ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfgrp2.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | dfgrp2.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 3 | 1, 2 | dfgrp2 18950 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛))) |
| 4 | ax-1 6 | . . . . . . 7 ⊢ (𝐺 ∈ V → (𝑛 ∈ 𝐵 → 𝐺 ∈ V)) | |
| 5 | fvprc 6873 | . . . . . . . 8 ⊢ (¬ 𝐺 ∈ V → (Base‘𝐺) = ∅) | |
| 6 | 1 | eleq2i 2827 | . . . . . . . . 9 ⊢ (𝑛 ∈ 𝐵 ↔ 𝑛 ∈ (Base‘𝐺)) |
| 7 | eleq2 2824 | . . . . . . . . . 10 ⊢ ((Base‘𝐺) = ∅ → (𝑛 ∈ (Base‘𝐺) ↔ 𝑛 ∈ ∅)) | |
| 8 | noel 4318 | . . . . . . . . . . 11 ⊢ ¬ 𝑛 ∈ ∅ | |
| 9 | 8 | pm2.21i 119 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ∅ → 𝐺 ∈ V) |
| 10 | 7, 9 | biimtrdi 253 | . . . . . . . . 9 ⊢ ((Base‘𝐺) = ∅ → (𝑛 ∈ (Base‘𝐺) → 𝐺 ∈ V)) |
| 11 | 6, 10 | biimtrid 242 | . . . . . . . 8 ⊢ ((Base‘𝐺) = ∅ → (𝑛 ∈ 𝐵 → 𝐺 ∈ V)) |
| 12 | 5, 11 | syl 17 | . . . . . . 7 ⊢ (¬ 𝐺 ∈ V → (𝑛 ∈ 𝐵 → 𝐺 ∈ V)) |
| 13 | 4, 12 | pm2.61i 182 | . . . . . 6 ⊢ (𝑛 ∈ 𝐵 → 𝐺 ∈ V) |
| 14 | 13 | a1d 25 | . . . . 5 ⊢ (𝑛 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) → 𝐺 ∈ V)) |
| 15 | 14 | rexlimiv 3135 | . . . 4 ⊢ (∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) → 𝐺 ∈ V) |
| 16 | 1, 2 | issgrpv 18704 | . . . 4 ⊢ (𝐺 ∈ V → (𝐺 ∈ Smgrp ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))))) |
| 17 | 15, 16 | syl 17 | . . 3 ⊢ (∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) → (𝐺 ∈ Smgrp ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))))) |
| 18 | 17 | pm5.32ri 575 | . 2 ⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ↔ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛))) |
| 19 | 3, 18 | bitri 275 | 1 ⊢ (𝐺 ∈ Grp ↔ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 Vcvv 3464 ∅c0 4313 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 Smgrpcsgrp 18701 Grpcgrp 18921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-riota 7367 df-ov 7413 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |