![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfgrp2e | Structured version Visualization version GIF version |
Description: Alternate definition of a group as a set with a closed, associative operation, a left identity and a left inverse for each element. Alternate definition in [Lang] p. 7. (Contributed by NM, 10-Oct-2006.) (Revised by AV, 28-Aug-2021.) |
Ref | Expression |
---|---|
dfgrp2.b | ⊢ 𝐵 = (Base‘𝐺) |
dfgrp2.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
dfgrp2e | ⊢ (𝐺 ∈ Grp ↔ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfgrp2.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | dfgrp2.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | 1, 2 | dfgrp2 18889 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛))) |
4 | ax-1 6 | . . . . . . 7 ⊢ (𝐺 ∈ V → (𝑛 ∈ 𝐵 → 𝐺 ∈ V)) | |
5 | fvprc 6876 | . . . . . . . 8 ⊢ (¬ 𝐺 ∈ V → (Base‘𝐺) = ∅) | |
6 | 1 | eleq2i 2819 | . . . . . . . . 9 ⊢ (𝑛 ∈ 𝐵 ↔ 𝑛 ∈ (Base‘𝐺)) |
7 | eleq2 2816 | . . . . . . . . . 10 ⊢ ((Base‘𝐺) = ∅ → (𝑛 ∈ (Base‘𝐺) ↔ 𝑛 ∈ ∅)) | |
8 | noel 4325 | . . . . . . . . . . 11 ⊢ ¬ 𝑛 ∈ ∅ | |
9 | 8 | pm2.21i 119 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ∅ → 𝐺 ∈ V) |
10 | 7, 9 | biimtrdi 252 | . . . . . . . . 9 ⊢ ((Base‘𝐺) = ∅ → (𝑛 ∈ (Base‘𝐺) → 𝐺 ∈ V)) |
11 | 6, 10 | biimtrid 241 | . . . . . . . 8 ⊢ ((Base‘𝐺) = ∅ → (𝑛 ∈ 𝐵 → 𝐺 ∈ V)) |
12 | 5, 11 | syl 17 | . . . . . . 7 ⊢ (¬ 𝐺 ∈ V → (𝑛 ∈ 𝐵 → 𝐺 ∈ V)) |
13 | 4, 12 | pm2.61i 182 | . . . . . 6 ⊢ (𝑛 ∈ 𝐵 → 𝐺 ∈ V) |
14 | 13 | a1d 25 | . . . . 5 ⊢ (𝑛 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) → 𝐺 ∈ V)) |
15 | 14 | rexlimiv 3142 | . . . 4 ⊢ (∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) → 𝐺 ∈ V) |
16 | 1, 2 | issgrpv 18651 | . . . 4 ⊢ (𝐺 ∈ V → (𝐺 ∈ Smgrp ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))))) |
17 | 15, 16 | syl 17 | . . 3 ⊢ (∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) → (𝐺 ∈ Smgrp ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))))) |
18 | 17 | pm5.32ri 575 | . 2 ⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ↔ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛))) |
19 | 3, 18 | bitri 275 | 1 ⊢ (𝐺 ∈ Grp ↔ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ∃wrex 3064 Vcvv 3468 ∅c0 4317 ‘cfv 6536 (class class class)co 7404 Basecbs 17150 +gcplusg 17203 Smgrpcsgrp 18648 Grpcgrp 18860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6488 df-fun 6538 df-fv 6544 df-riota 7360 df-ov 7407 df-0g 17393 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-grp 18863 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |