![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfgrp2e | Structured version Visualization version GIF version |
Description: Alternate definition of a group as a set with a closed, associative operation, a left identity and a left inverse for each element. Alternate definition in [Lang] p. 7. (Contributed by NM, 10-Oct-2006.) (Revised by AV, 28-Aug-2021.) |
Ref | Expression |
---|---|
dfgrp2.b | ⊢ 𝐵 = (Base‘𝐺) |
dfgrp2.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
dfgrp2e | ⊢ (𝐺 ∈ Grp ↔ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfgrp2.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | dfgrp2.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | 1, 2 | dfgrp2 18780 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛))) |
4 | ax-1 6 | . . . . . . 7 ⊢ (𝐺 ∈ V → (𝑛 ∈ 𝐵 → 𝐺 ∈ V)) | |
5 | fvprc 6835 | . . . . . . . 8 ⊢ (¬ 𝐺 ∈ V → (Base‘𝐺) = ∅) | |
6 | 1 | eleq2i 2826 | . . . . . . . . 9 ⊢ (𝑛 ∈ 𝐵 ↔ 𝑛 ∈ (Base‘𝐺)) |
7 | eleq2 2823 | . . . . . . . . . 10 ⊢ ((Base‘𝐺) = ∅ → (𝑛 ∈ (Base‘𝐺) ↔ 𝑛 ∈ ∅)) | |
8 | noel 4291 | . . . . . . . . . . 11 ⊢ ¬ 𝑛 ∈ ∅ | |
9 | 8 | pm2.21i 119 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ∅ → 𝐺 ∈ V) |
10 | 7, 9 | syl6bi 253 | . . . . . . . . 9 ⊢ ((Base‘𝐺) = ∅ → (𝑛 ∈ (Base‘𝐺) → 𝐺 ∈ V)) |
11 | 6, 10 | biimtrid 241 | . . . . . . . 8 ⊢ ((Base‘𝐺) = ∅ → (𝑛 ∈ 𝐵 → 𝐺 ∈ V)) |
12 | 5, 11 | syl 17 | . . . . . . 7 ⊢ (¬ 𝐺 ∈ V → (𝑛 ∈ 𝐵 → 𝐺 ∈ V)) |
13 | 4, 12 | pm2.61i 182 | . . . . . 6 ⊢ (𝑛 ∈ 𝐵 → 𝐺 ∈ V) |
14 | 13 | a1d 25 | . . . . 5 ⊢ (𝑛 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) → 𝐺 ∈ V)) |
15 | 14 | rexlimiv 3142 | . . . 4 ⊢ (∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) → 𝐺 ∈ V) |
16 | 1, 2 | issgrpv 18553 | . . . 4 ⊢ (𝐺 ∈ V → (𝐺 ∈ Smgrp ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))))) |
17 | 15, 16 | syl 17 | . . 3 ⊢ (∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) → (𝐺 ∈ Smgrp ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))))) |
18 | 17 | pm5.32ri 577 | . 2 ⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ↔ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛))) |
19 | 3, 18 | bitri 275 | 1 ⊢ (𝐺 ∈ Grp ↔ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3061 ∃wrex 3070 Vcvv 3444 ∅c0 4283 ‘cfv 6497 (class class class)co 7358 Basecbs 17088 +gcplusg 17138 Smgrpcsgrp 18550 Grpcgrp 18753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-iota 6449 df-fun 6499 df-fv 6505 df-riota 7314 df-ov 7361 df-0g 17328 df-mgm 18502 df-sgrp 18551 df-mnd 18562 df-grp 18756 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |