| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isgrpix | Structured version Visualization version GIF version | ||
| Description: Properties that determine a group. Read 𝑁 as 𝑁(𝑥). Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use. (New usage is discouraged.) (Contributed by NM, 4-Sep-2011.) |
| Ref | Expression |
|---|---|
| isgrpix.a | ⊢ 𝐵 ∈ V |
| isgrpix.b | ⊢ + ∈ V |
| isgrpix.g | ⊢ 𝐺 = {〈1, 𝐵〉, 〈2, + 〉} |
| isgrpix.2 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
| isgrpix.3 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| isgrpix.z | ⊢ 0 ∈ 𝐵 |
| isgrpix.5 | ⊢ (𝑥 ∈ 𝐵 → ( 0 + 𝑥) = 𝑥) |
| isgrpix.6 | ⊢ (𝑥 ∈ 𝐵 → 𝑁 ∈ 𝐵) |
| isgrpix.7 | ⊢ (𝑥 ∈ 𝐵 → (𝑁 + 𝑥) = 0 ) |
| Ref | Expression |
|---|---|
| isgrpix | ⊢ 𝐺 ∈ Grp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgrpix.a | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | isgrpix.b | . . 3 ⊢ + ∈ V | |
| 3 | isgrpix.g | . . 3 ⊢ 𝐺 = {〈1, 𝐵〉, 〈2, + 〉} | |
| 4 | 1, 2, 3 | grpbasex 17196 | . 2 ⊢ 𝐵 = (Base‘𝐺) |
| 5 | 1, 2, 3 | grpplusgx 17197 | . 2 ⊢ + = (+g‘𝐺) |
| 6 | isgrpix.2 | . 2 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) | |
| 7 | isgrpix.3 | . 2 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
| 8 | isgrpix.z | . 2 ⊢ 0 ∈ 𝐵 | |
| 9 | isgrpix.5 | . 2 ⊢ (𝑥 ∈ 𝐵 → ( 0 + 𝑥) = 𝑥) | |
| 10 | isgrpix.6 | . 2 ⊢ (𝑥 ∈ 𝐵 → 𝑁 ∈ 𝐵) | |
| 11 | isgrpix.7 | . 2 ⊢ (𝑥 ∈ 𝐵 → (𝑁 + 𝑥) = 0 ) | |
| 12 | 4, 5, 6, 7, 8, 9, 10, 11 | isgrpi 18872 | 1 ⊢ 𝐺 ∈ Grp |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {cpr 4578 〈cop 4582 (class class class)co 7346 1c1 11007 2c2 12180 Grpcgrp 18846 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 |
| This theorem is referenced by: cnaddablx 19781 zaddablx 19785 |
| Copyright terms: Public domain | W3C validator |