Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfsingles2 Structured version   Visualization version   GIF version

Theorem dfsingles2 35902
Description: Alternate definition of the class of all singletons. (Contributed by Scott Fenton, 20-Nov-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dfsingles2 Singletons = {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfsingles2
StepHypRef Expression
1 elsingles 35899 . 2 (𝑥 Singletons ↔ ∃𝑦 𝑥 = {𝑦})
21eqabi 2863 1 Singletons = {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wex 1779  {cab 2707  {csn 4585   Singletons csingles 35820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-symdif 4212  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-eprel 5531  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-1st 7947  df-2nd 7948  df-txp 35835  df-singleton 35843  df-singles 35844
This theorem is referenced by:  dfiota3  35904
  Copyright terms: Public domain W3C validator