Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvsingle Structured version   Visualization version   GIF version

Theorem fvsingle 35197
Description: The value of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Revised by Scott Fenton, 13-Apr-2018.)
Assertion
Ref Expression
fvsingle (Singleton‘𝐴) = {𝐴}

Proof of Theorem fvsingle
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . . 4 (𝑥 = 𝐴 → (Singleton‘𝑥) = (Singleton‘𝐴))
2 sneq 4638 . . . 4 (𝑥 = 𝐴 → {𝑥} = {𝐴})
31, 2eqeq12d 2747 . . 3 (𝑥 = 𝐴 → ((Singleton‘𝑥) = {𝑥} ↔ (Singleton‘𝐴) = {𝐴}))
4 eqid 2731 . . . . 5 {𝑥} = {𝑥}
5 vex 3477 . . . . . 6 𝑥 ∈ V
6 vsnex 5429 . . . . . 6 {𝑥} ∈ V
75, 6brsingle 35194 . . . . 5 (𝑥Singleton{𝑥} ↔ {𝑥} = {𝑥})
84, 7mpbir 230 . . . 4 𝑥Singleton{𝑥}
9 fnsingle 35196 . . . . 5 Singleton Fn V
10 fnbrfvb 6944 . . . . 5 ((Singleton Fn V ∧ 𝑥 ∈ V) → ((Singleton‘𝑥) = {𝑥} ↔ 𝑥Singleton{𝑥}))
119, 5, 10mp2an 689 . . . 4 ((Singleton‘𝑥) = {𝑥} ↔ 𝑥Singleton{𝑥})
128, 11mpbir 230 . . 3 (Singleton‘𝑥) = {𝑥}
133, 12vtoclg 3542 . 2 (𝐴 ∈ V → (Singleton‘𝐴) = {𝐴})
14 fvprc 6883 . . 3 𝐴 ∈ V → (Singleton‘𝐴) = ∅)
15 snprc 4721 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
1615biimpi 215 . . 3 𝐴 ∈ V → {𝐴} = ∅)
1714, 16eqtr4d 2774 . 2 𝐴 ∈ V → (Singleton‘𝐴) = {𝐴})
1813, 17pm2.61i 182 1 (Singleton‘𝐴) = {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1540  wcel 2105  Vcvv 3473  c0 4322  {csn 4628   class class class wbr 5148   Fn wfn 6538  cfv 6543  Singletoncsingle 35115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-symdif 4242  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-eprel 5580  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fo 6549  df-fv 6551  df-1st 7978  df-2nd 7979  df-txp 35131  df-singleton 35139
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator