![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvsingle | Structured version Visualization version GIF version |
Description: The value of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Revised by Scott Fenton, 13-Apr-2018.) |
Ref | Expression |
---|---|
fvsingle | ⊢ (Singleton‘𝐴) = {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . . 4 ⊢ (𝑥 = 𝐴 → (Singleton‘𝑥) = (Singleton‘𝐴)) | |
2 | sneq 4634 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
3 | 1, 2 | eqeq12d 2743 | . . 3 ⊢ (𝑥 = 𝐴 → ((Singleton‘𝑥) = {𝑥} ↔ (Singleton‘𝐴) = {𝐴})) |
4 | eqid 2727 | . . . . 5 ⊢ {𝑥} = {𝑥} | |
5 | vex 3473 | . . . . . 6 ⊢ 𝑥 ∈ V | |
6 | vsnex 5425 | . . . . . 6 ⊢ {𝑥} ∈ V | |
7 | 5, 6 | brsingle 35436 | . . . . 5 ⊢ (𝑥Singleton{𝑥} ↔ {𝑥} = {𝑥}) |
8 | 4, 7 | mpbir 230 | . . . 4 ⊢ 𝑥Singleton{𝑥} |
9 | fnsingle 35438 | . . . . 5 ⊢ Singleton Fn V | |
10 | fnbrfvb 6944 | . . . . 5 ⊢ ((Singleton Fn V ∧ 𝑥 ∈ V) → ((Singleton‘𝑥) = {𝑥} ↔ 𝑥Singleton{𝑥})) | |
11 | 9, 5, 10 | mp2an 691 | . . . 4 ⊢ ((Singleton‘𝑥) = {𝑥} ↔ 𝑥Singleton{𝑥}) |
12 | 8, 11 | mpbir 230 | . . 3 ⊢ (Singleton‘𝑥) = {𝑥} |
13 | 3, 12 | vtoclg 3538 | . 2 ⊢ (𝐴 ∈ V → (Singleton‘𝐴) = {𝐴}) |
14 | fvprc 6883 | . . 3 ⊢ (¬ 𝐴 ∈ V → (Singleton‘𝐴) = ∅) | |
15 | snprc 4717 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
16 | 15 | biimpi 215 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
17 | 14, 16 | eqtr4d 2770 | . 2 ⊢ (¬ 𝐴 ∈ V → (Singleton‘𝐴) = {𝐴}) |
18 | 13, 17 | pm2.61i 182 | 1 ⊢ (Singleton‘𝐴) = {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1534 ∈ wcel 2099 Vcvv 3469 ∅c0 4318 {csn 4624 class class class wbr 5142 Fn wfn 6537 ‘cfv 6542 Singletoncsingle 35357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-symdif 4238 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-eprel 5576 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fo 6548 df-fv 6550 df-1st 7985 df-2nd 7986 df-txp 35373 df-singleton 35381 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |