| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvsingle | Structured version Visualization version GIF version | ||
| Description: The value of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Revised by Scott Fenton, 13-Apr-2018.) |
| Ref | Expression |
|---|---|
| fvsingle | ⊢ (Singleton‘𝐴) = {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . . 4 ⊢ (𝑥 = 𝐴 → (Singleton‘𝑥) = (Singleton‘𝐴)) | |
| 2 | sneq 4586 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 3 | 1, 2 | eqeq12d 2747 | . . 3 ⊢ (𝑥 = 𝐴 → ((Singleton‘𝑥) = {𝑥} ↔ (Singleton‘𝐴) = {𝐴})) |
| 4 | eqid 2731 | . . . . 5 ⊢ {𝑥} = {𝑥} | |
| 5 | vex 3440 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 6 | vsnex 5372 | . . . . . 6 ⊢ {𝑥} ∈ V | |
| 7 | 5, 6 | brsingle 35950 | . . . . 5 ⊢ (𝑥Singleton{𝑥} ↔ {𝑥} = {𝑥}) |
| 8 | 4, 7 | mpbir 231 | . . . 4 ⊢ 𝑥Singleton{𝑥} |
| 9 | fnsingle 35952 | . . . . 5 ⊢ Singleton Fn V | |
| 10 | fnbrfvb 6872 | . . . . 5 ⊢ ((Singleton Fn V ∧ 𝑥 ∈ V) → ((Singleton‘𝑥) = {𝑥} ↔ 𝑥Singleton{𝑥})) | |
| 11 | 9, 5, 10 | mp2an 692 | . . . 4 ⊢ ((Singleton‘𝑥) = {𝑥} ↔ 𝑥Singleton{𝑥}) |
| 12 | 8, 11 | mpbir 231 | . . 3 ⊢ (Singleton‘𝑥) = {𝑥} |
| 13 | 3, 12 | vtoclg 3509 | . 2 ⊢ (𝐴 ∈ V → (Singleton‘𝐴) = {𝐴}) |
| 14 | fvprc 6814 | . . 3 ⊢ (¬ 𝐴 ∈ V → (Singleton‘𝐴) = ∅) | |
| 15 | snprc 4670 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 16 | 15 | biimpi 216 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 17 | 14, 16 | eqtr4d 2769 | . 2 ⊢ (¬ 𝐴 ∈ V → (Singleton‘𝐴) = {𝐴}) |
| 18 | 13, 17 | pm2.61i 182 | 1 ⊢ (Singleton‘𝐴) = {𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 {csn 4576 class class class wbr 5091 Fn wfn 6476 ‘cfv 6481 Singletoncsingle 35871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-symdif 4203 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-eprel 5516 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-1st 7921 df-2nd 7922 df-txp 35887 df-singleton 35895 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |