Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvsingle Structured version   Visualization version   GIF version

Theorem fvsingle 35983
Description: The value of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Revised by Scott Fenton, 13-Apr-2018.)
Assertion
Ref Expression
fvsingle (Singleton‘𝐴) = {𝐴}

Proof of Theorem fvsingle
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6828 . . . 4 (𝑥 = 𝐴 → (Singleton‘𝑥) = (Singleton‘𝐴))
2 sneq 4585 . . . 4 (𝑥 = 𝐴 → {𝑥} = {𝐴})
31, 2eqeq12d 2749 . . 3 (𝑥 = 𝐴 → ((Singleton‘𝑥) = {𝑥} ↔ (Singleton‘𝐴) = {𝐴}))
4 eqid 2733 . . . . 5 {𝑥} = {𝑥}
5 vex 3441 . . . . . 6 𝑥 ∈ V
6 vsnex 5374 . . . . . 6 {𝑥} ∈ V
75, 6brsingle 35980 . . . . 5 (𝑥Singleton{𝑥} ↔ {𝑥} = {𝑥})
84, 7mpbir 231 . . . 4 𝑥Singleton{𝑥}
9 fnsingle 35982 . . . . 5 Singleton Fn V
10 fnbrfvb 6878 . . . . 5 ((Singleton Fn V ∧ 𝑥 ∈ V) → ((Singleton‘𝑥) = {𝑥} ↔ 𝑥Singleton{𝑥}))
119, 5, 10mp2an 692 . . . 4 ((Singleton‘𝑥) = {𝑥} ↔ 𝑥Singleton{𝑥})
128, 11mpbir 231 . . 3 (Singleton‘𝑥) = {𝑥}
133, 12vtoclg 3508 . 2 (𝐴 ∈ V → (Singleton‘𝐴) = {𝐴})
14 fvprc 6820 . . 3 𝐴 ∈ V → (Singleton‘𝐴) = ∅)
15 snprc 4669 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
1615biimpi 216 . . 3 𝐴 ∈ V → {𝐴} = ∅)
1714, 16eqtr4d 2771 . 2 𝐴 ∈ V → (Singleton‘𝐴) = {𝐴})
1813, 17pm2.61i 182 1 (Singleton‘𝐴) = {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wcel 2113  Vcvv 3437  c0 4282  {csn 4575   class class class wbr 5093   Fn wfn 6481  cfv 6486  Singletoncsingle 35901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-symdif 4202  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-eprel 5519  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-1st 7927  df-2nd 7928  df-txp 35917  df-singleton 35925
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator