Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvsingle Structured version   Visualization version   GIF version

Theorem fvsingle 35908
Description: The value of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Revised by Scott Fenton, 13-Apr-2018.)
Assertion
Ref Expression
fvsingle (Singleton‘𝐴) = {𝐴}

Proof of Theorem fvsingle
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . 4 (𝑥 = 𝐴 → (Singleton‘𝑥) = (Singleton‘𝐴))
2 sneq 4599 . . . 4 (𝑥 = 𝐴 → {𝑥} = {𝐴})
31, 2eqeq12d 2745 . . 3 (𝑥 = 𝐴 → ((Singleton‘𝑥) = {𝑥} ↔ (Singleton‘𝐴) = {𝐴}))
4 eqid 2729 . . . . 5 {𝑥} = {𝑥}
5 vex 3451 . . . . . 6 𝑥 ∈ V
6 vsnex 5389 . . . . . 6 {𝑥} ∈ V
75, 6brsingle 35905 . . . . 5 (𝑥Singleton{𝑥} ↔ {𝑥} = {𝑥})
84, 7mpbir 231 . . . 4 𝑥Singleton{𝑥}
9 fnsingle 35907 . . . . 5 Singleton Fn V
10 fnbrfvb 6911 . . . . 5 ((Singleton Fn V ∧ 𝑥 ∈ V) → ((Singleton‘𝑥) = {𝑥} ↔ 𝑥Singleton{𝑥}))
119, 5, 10mp2an 692 . . . 4 ((Singleton‘𝑥) = {𝑥} ↔ 𝑥Singleton{𝑥})
128, 11mpbir 231 . . 3 (Singleton‘𝑥) = {𝑥}
133, 12vtoclg 3520 . 2 (𝐴 ∈ V → (Singleton‘𝐴) = {𝐴})
14 fvprc 6850 . . 3 𝐴 ∈ V → (Singleton‘𝐴) = ∅)
15 snprc 4681 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
1615biimpi 216 . . 3 𝐴 ∈ V → {𝐴} = ∅)
1714, 16eqtr4d 2767 . 2 𝐴 ∈ V → (Singleton‘𝐴) = {𝐴})
1813, 17pm2.61i 182 1 (Singleton‘𝐴) = {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296  {csn 4589   class class class wbr 5107   Fn wfn 6506  cfv 6511  Singletoncsingle 35826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-symdif 4216  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-eprel 5538  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-1st 7968  df-2nd 7969  df-txp 35842  df-singleton 35850
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator