| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvsingle | Structured version Visualization version GIF version | ||
| Description: The value of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Revised by Scott Fenton, 13-Apr-2018.) |
| Ref | Expression |
|---|---|
| fvsingle | ⊢ (Singleton‘𝐴) = {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6861 | . . . 4 ⊢ (𝑥 = 𝐴 → (Singleton‘𝑥) = (Singleton‘𝐴)) | |
| 2 | sneq 4602 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 3 | 1, 2 | eqeq12d 2746 | . . 3 ⊢ (𝑥 = 𝐴 → ((Singleton‘𝑥) = {𝑥} ↔ (Singleton‘𝐴) = {𝐴})) |
| 4 | eqid 2730 | . . . . 5 ⊢ {𝑥} = {𝑥} | |
| 5 | vex 3454 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 6 | vsnex 5392 | . . . . . 6 ⊢ {𝑥} ∈ V | |
| 7 | 5, 6 | brsingle 35912 | . . . . 5 ⊢ (𝑥Singleton{𝑥} ↔ {𝑥} = {𝑥}) |
| 8 | 4, 7 | mpbir 231 | . . . 4 ⊢ 𝑥Singleton{𝑥} |
| 9 | fnsingle 35914 | . . . . 5 ⊢ Singleton Fn V | |
| 10 | fnbrfvb 6914 | . . . . 5 ⊢ ((Singleton Fn V ∧ 𝑥 ∈ V) → ((Singleton‘𝑥) = {𝑥} ↔ 𝑥Singleton{𝑥})) | |
| 11 | 9, 5, 10 | mp2an 692 | . . . 4 ⊢ ((Singleton‘𝑥) = {𝑥} ↔ 𝑥Singleton{𝑥}) |
| 12 | 8, 11 | mpbir 231 | . . 3 ⊢ (Singleton‘𝑥) = {𝑥} |
| 13 | 3, 12 | vtoclg 3523 | . 2 ⊢ (𝐴 ∈ V → (Singleton‘𝐴) = {𝐴}) |
| 14 | fvprc 6853 | . . 3 ⊢ (¬ 𝐴 ∈ V → (Singleton‘𝐴) = ∅) | |
| 15 | snprc 4684 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 16 | 15 | biimpi 216 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 17 | 14, 16 | eqtr4d 2768 | . 2 ⊢ (¬ 𝐴 ∈ V → (Singleton‘𝐴) = {𝐴}) |
| 18 | 13, 17 | pm2.61i 182 | 1 ⊢ (Singleton‘𝐴) = {𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 {csn 4592 class class class wbr 5110 Fn wfn 6509 ‘cfv 6514 Singletoncsingle 35833 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-symdif 4219 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-eprel 5541 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 df-1st 7971 df-2nd 7972 df-txp 35849 df-singleton 35857 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |