| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvsingle | Structured version Visualization version GIF version | ||
| Description: The value of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Revised by Scott Fenton, 13-Apr-2018.) |
| Ref | Expression |
|---|---|
| fvsingle | ⊢ (Singleton‘𝐴) = {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6875 | . . . 4 ⊢ (𝑥 = 𝐴 → (Singleton‘𝑥) = (Singleton‘𝐴)) | |
| 2 | sneq 4611 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 3 | 1, 2 | eqeq12d 2751 | . . 3 ⊢ (𝑥 = 𝐴 → ((Singleton‘𝑥) = {𝑥} ↔ (Singleton‘𝐴) = {𝐴})) |
| 4 | eqid 2735 | . . . . 5 ⊢ {𝑥} = {𝑥} | |
| 5 | vex 3463 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 6 | vsnex 5404 | . . . . . 6 ⊢ {𝑥} ∈ V | |
| 7 | 5, 6 | brsingle 35881 | . . . . 5 ⊢ (𝑥Singleton{𝑥} ↔ {𝑥} = {𝑥}) |
| 8 | 4, 7 | mpbir 231 | . . . 4 ⊢ 𝑥Singleton{𝑥} |
| 9 | fnsingle 35883 | . . . . 5 ⊢ Singleton Fn V | |
| 10 | fnbrfvb 6928 | . . . . 5 ⊢ ((Singleton Fn V ∧ 𝑥 ∈ V) → ((Singleton‘𝑥) = {𝑥} ↔ 𝑥Singleton{𝑥})) | |
| 11 | 9, 5, 10 | mp2an 692 | . . . 4 ⊢ ((Singleton‘𝑥) = {𝑥} ↔ 𝑥Singleton{𝑥}) |
| 12 | 8, 11 | mpbir 231 | . . 3 ⊢ (Singleton‘𝑥) = {𝑥} |
| 13 | 3, 12 | vtoclg 3533 | . 2 ⊢ (𝐴 ∈ V → (Singleton‘𝐴) = {𝐴}) |
| 14 | fvprc 6867 | . . 3 ⊢ (¬ 𝐴 ∈ V → (Singleton‘𝐴) = ∅) | |
| 15 | snprc 4693 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 16 | 15 | biimpi 216 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 17 | 14, 16 | eqtr4d 2773 | . 2 ⊢ (¬ 𝐴 ∈ V → (Singleton‘𝐴) = {𝐴}) |
| 18 | 13, 17 | pm2.61i 182 | 1 ⊢ (Singleton‘𝐴) = {𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 {csn 4601 class class class wbr 5119 Fn wfn 6525 ‘cfv 6530 Singletoncsingle 35802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-symdif 4228 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-eprel 5553 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fo 6536 df-fv 6538 df-1st 7986 df-2nd 7987 df-txp 35818 df-singleton 35826 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |