| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvsingle | Structured version Visualization version GIF version | ||
| Description: The value of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Revised by Scott Fenton, 13-Apr-2018.) |
| Ref | Expression |
|---|---|
| fvsingle | ⊢ (Singleton‘𝐴) = {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6826 | . . . 4 ⊢ (𝑥 = 𝐴 → (Singleton‘𝑥) = (Singleton‘𝐴)) | |
| 2 | sneq 4589 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 3 | 1, 2 | eqeq12d 2745 | . . 3 ⊢ (𝑥 = 𝐴 → ((Singleton‘𝑥) = {𝑥} ↔ (Singleton‘𝐴) = {𝐴})) |
| 4 | eqid 2729 | . . . . 5 ⊢ {𝑥} = {𝑥} | |
| 5 | vex 3442 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 6 | vsnex 5376 | . . . . . 6 ⊢ {𝑥} ∈ V | |
| 7 | 5, 6 | brsingle 35890 | . . . . 5 ⊢ (𝑥Singleton{𝑥} ↔ {𝑥} = {𝑥}) |
| 8 | 4, 7 | mpbir 231 | . . . 4 ⊢ 𝑥Singleton{𝑥} |
| 9 | fnsingle 35892 | . . . . 5 ⊢ Singleton Fn V | |
| 10 | fnbrfvb 6877 | . . . . 5 ⊢ ((Singleton Fn V ∧ 𝑥 ∈ V) → ((Singleton‘𝑥) = {𝑥} ↔ 𝑥Singleton{𝑥})) | |
| 11 | 9, 5, 10 | mp2an 692 | . . . 4 ⊢ ((Singleton‘𝑥) = {𝑥} ↔ 𝑥Singleton{𝑥}) |
| 12 | 8, 11 | mpbir 231 | . . 3 ⊢ (Singleton‘𝑥) = {𝑥} |
| 13 | 3, 12 | vtoclg 3511 | . 2 ⊢ (𝐴 ∈ V → (Singleton‘𝐴) = {𝐴}) |
| 14 | fvprc 6818 | . . 3 ⊢ (¬ 𝐴 ∈ V → (Singleton‘𝐴) = ∅) | |
| 15 | snprc 4671 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 16 | 15 | biimpi 216 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 17 | 14, 16 | eqtr4d 2767 | . 2 ⊢ (¬ 𝐴 ∈ V → (Singleton‘𝐴) = {𝐴}) |
| 18 | 13, 17 | pm2.61i 182 | 1 ⊢ (Singleton‘𝐴) = {𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∅c0 4286 {csn 4579 class class class wbr 5095 Fn wfn 6481 ‘cfv 6486 Singletoncsingle 35811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-symdif 4206 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-eprel 5523 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fo 6492 df-fv 6494 df-1st 7931 df-2nd 7932 df-txp 35827 df-singleton 35835 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |