Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvsingle | Structured version Visualization version GIF version |
Description: The value of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Revised by Scott Fenton, 13-Apr-2018.) |
Ref | Expression |
---|---|
fvsingle | ⊢ (Singleton‘𝐴) = {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6768 | . . . 4 ⊢ (𝑥 = 𝐴 → (Singleton‘𝑥) = (Singleton‘𝐴)) | |
2 | sneq 4576 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
3 | 1, 2 | eqeq12d 2755 | . . 3 ⊢ (𝑥 = 𝐴 → ((Singleton‘𝑥) = {𝑥} ↔ (Singleton‘𝐴) = {𝐴})) |
4 | eqid 2739 | . . . . 5 ⊢ {𝑥} = {𝑥} | |
5 | vex 3434 | . . . . . 6 ⊢ 𝑥 ∈ V | |
6 | snex 5357 | . . . . . 6 ⊢ {𝑥} ∈ V | |
7 | 5, 6 | brsingle 34198 | . . . . 5 ⊢ (𝑥Singleton{𝑥} ↔ {𝑥} = {𝑥}) |
8 | 4, 7 | mpbir 230 | . . . 4 ⊢ 𝑥Singleton{𝑥} |
9 | fnsingle 34200 | . . . . 5 ⊢ Singleton Fn V | |
10 | fnbrfvb 6816 | . . . . 5 ⊢ ((Singleton Fn V ∧ 𝑥 ∈ V) → ((Singleton‘𝑥) = {𝑥} ↔ 𝑥Singleton{𝑥})) | |
11 | 9, 5, 10 | mp2an 688 | . . . 4 ⊢ ((Singleton‘𝑥) = {𝑥} ↔ 𝑥Singleton{𝑥}) |
12 | 8, 11 | mpbir 230 | . . 3 ⊢ (Singleton‘𝑥) = {𝑥} |
13 | 3, 12 | vtoclg 3503 | . 2 ⊢ (𝐴 ∈ V → (Singleton‘𝐴) = {𝐴}) |
14 | fvprc 6760 | . . 3 ⊢ (¬ 𝐴 ∈ V → (Singleton‘𝐴) = ∅) | |
15 | snprc 4658 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
16 | 15 | biimpi 215 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
17 | 14, 16 | eqtr4d 2782 | . 2 ⊢ (¬ 𝐴 ∈ V → (Singleton‘𝐴) = {𝐴}) |
18 | 13, 17 | pm2.61i 182 | 1 ⊢ (Singleton‘𝐴) = {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ∅c0 4261 {csn 4566 class class class wbr 5078 Fn wfn 6425 ‘cfv 6430 Singletoncsingle 34119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-symdif 4181 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-eprel 5494 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fo 6436 df-fv 6438 df-1st 7817 df-2nd 7818 df-txp 34135 df-singleton 34143 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |