![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvsingle | Structured version Visualization version GIF version |
Description: The value of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Revised by Scott Fenton, 13-Apr-2018.) |
Ref | Expression |
---|---|
fvsingle | ⊢ (Singleton‘𝐴) = {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . . 4 ⊢ (𝑥 = 𝐴 → (Singleton‘𝑥) = (Singleton‘𝐴)) | |
2 | sneq 4638 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
3 | 1, 2 | eqeq12d 2747 | . . 3 ⊢ (𝑥 = 𝐴 → ((Singleton‘𝑥) = {𝑥} ↔ (Singleton‘𝐴) = {𝐴})) |
4 | eqid 2731 | . . . . 5 ⊢ {𝑥} = {𝑥} | |
5 | vex 3477 | . . . . . 6 ⊢ 𝑥 ∈ V | |
6 | vsnex 5429 | . . . . . 6 ⊢ {𝑥} ∈ V | |
7 | 5, 6 | brsingle 35194 | . . . . 5 ⊢ (𝑥Singleton{𝑥} ↔ {𝑥} = {𝑥}) |
8 | 4, 7 | mpbir 230 | . . . 4 ⊢ 𝑥Singleton{𝑥} |
9 | fnsingle 35196 | . . . . 5 ⊢ Singleton Fn V | |
10 | fnbrfvb 6944 | . . . . 5 ⊢ ((Singleton Fn V ∧ 𝑥 ∈ V) → ((Singleton‘𝑥) = {𝑥} ↔ 𝑥Singleton{𝑥})) | |
11 | 9, 5, 10 | mp2an 689 | . . . 4 ⊢ ((Singleton‘𝑥) = {𝑥} ↔ 𝑥Singleton{𝑥}) |
12 | 8, 11 | mpbir 230 | . . 3 ⊢ (Singleton‘𝑥) = {𝑥} |
13 | 3, 12 | vtoclg 3542 | . 2 ⊢ (𝐴 ∈ V → (Singleton‘𝐴) = {𝐴}) |
14 | fvprc 6883 | . . 3 ⊢ (¬ 𝐴 ∈ V → (Singleton‘𝐴) = ∅) | |
15 | snprc 4721 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
16 | 15 | biimpi 215 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
17 | 14, 16 | eqtr4d 2774 | . 2 ⊢ (¬ 𝐴 ∈ V → (Singleton‘𝐴) = {𝐴}) |
18 | 13, 17 | pm2.61i 182 | 1 ⊢ (Singleton‘𝐴) = {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∅c0 4322 {csn 4628 class class class wbr 5148 Fn wfn 6538 ‘cfv 6543 Singletoncsingle 35115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-symdif 4242 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-eprel 5580 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-1st 7978 df-2nd 7979 df-txp 35131 df-singleton 35139 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |