Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  discsubclem Structured version   Visualization version   GIF version

Theorem discsubclem 48924
Description: Lemma for discsubc 48925. (Contributed by Zhi Wang, 1-Nov-2025.)
Hypothesis
Ref Expression
discsubc.j 𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
Assertion
Ref Expression
discsubclem 𝐽 Fn (𝑆 × 𝑆)
Distinct variable group:   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐼(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem discsubclem
StepHypRef Expression
1 discsubc.j . 2 𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
2 snex 5404 . . 3 {(𝐼𝑥)} ∈ V
3 0ex 5275 . . 3 ∅ ∈ V
42, 3ifex 4549 . 2 if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) ∈ V
51, 4fnmpoi 8064 1 𝐽 Fn (𝑆 × 𝑆)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  c0 4306  ifcif 4498  {csn 4599   × cxp 5650   Fn wfn 6523  cfv 6528  cmpo 7402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-fv 6536  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984
This theorem is referenced by:  discsubc  48925  iinfconstbaslem  48926
  Copyright terms: Public domain W3C validator