| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > discsubclem | Structured version Visualization version GIF version | ||
| Description: Lemma for discsubc 49043. (Contributed by Zhi Wang, 1-Nov-2025.) |
| Ref | Expression |
|---|---|
| discsubc.j | ⊢ 𝐽 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅)) |
| Ref | Expression |
|---|---|
| discsubclem | ⊢ 𝐽 Fn (𝑆 × 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | discsubc.j | . 2 ⊢ 𝐽 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅)) | |
| 2 | snex 5393 | . . 3 ⊢ {(𝐼‘𝑥)} ∈ V | |
| 3 | 0ex 5264 | . . 3 ⊢ ∅ ∈ V | |
| 4 | 2, 3 | ifex 4541 | . 2 ⊢ if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅) ∈ V |
| 5 | 1, 4 | fnmpoi 8051 | 1 ⊢ 𝐽 Fn (𝑆 × 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4298 ifcif 4490 {csn 4591 × cxp 5638 Fn wfn 6508 ‘cfv 6513 ∈ cmpo 7391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 |
| This theorem is referenced by: discsubc 49043 iinfconstbaslem 49044 |
| Copyright terms: Public domain | W3C validator |