Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinfconstbaslem Structured version   Visualization version   GIF version

Theorem iinfconstbaslem 49047
Description: Lemma for iinfconstbas 49048. (Contributed by Zhi Wang, 1-Nov-2025.)
Hypotheses
Ref Expression
discsubc.j 𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
discsubc.b 𝐵 = (Base‘𝐶)
discsubc.i 𝐼 = (Id‘𝐶)
discsubc.s (𝜑𝑆𝐵)
discsubc.c (𝜑𝐶 ∈ Cat)
iinfconstbas.a (𝜑𝐴 = ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))
Assertion
Ref Expression
iinfconstbaslem (𝜑𝐽𝐴)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐼,𝑦   𝑗,𝐽   𝑆,𝑗
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑗)   𝐴(𝑥,𝑦,𝑗)   𝐵(𝑥,𝑦,𝑗)   𝐶(𝑥,𝑦,𝑗)   𝐼(𝑗)   𝐽(𝑥,𝑦)

Proof of Theorem iinfconstbaslem
StepHypRef Expression
1 discsubc.j . . . 4 𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
2 discsubc.b . . . 4 𝐵 = (Base‘𝐶)
3 discsubc.i . . . 4 𝐼 = (Id‘𝐶)
4 discsubc.s . . . 4 (𝜑𝑆𝐵)
5 discsubc.c . . . 4 (𝜑𝐶 ∈ Cat)
61, 2, 3, 4, 5discsubc 49046 . . 3 (𝜑𝐽 ∈ (Subcat‘𝐶))
71discsubclem 49045 . . . . 5 𝐽 Fn (𝑆 × 𝑆)
87a1i 11 . . . 4 (𝜑𝐽 Fn (𝑆 × 𝑆))
9 fneq1 6591 . . . 4 (𝑗 = 𝐽 → (𝑗 Fn (𝑆 × 𝑆) ↔ 𝐽 Fn (𝑆 × 𝑆)))
106, 8, 9elabd 3645 . . 3 (𝜑𝐽 ∈ {𝑗𝑗 Fn (𝑆 × 𝑆)})
116, 10elind 4159 . 2 (𝜑𝐽 ∈ ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))
12 iinfconstbas.a . 2 (𝜑𝐴 = ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))
1311, 12eleqtrrd 2831 1 (𝜑𝐽𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cab 2707  cin 3910  wss 3911  c0 4292  ifcif 4484  {csn 4585   × cxp 5629   Fn wfn 6494  cfv 6499  cmpo 7371  Basecbs 17155  Catccat 17605  Idccid 17606  Subcatcsubc 17751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-pm 8779  df-ixp 8848  df-cat 17609  df-cid 17610  df-homf 17611  df-ssc 17752  df-subc 17754
This theorem is referenced by:  iinfconstbas  49048
  Copyright terms: Public domain W3C validator