| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iinfconstbaslem | Structured version Visualization version GIF version | ||
| Description: Lemma for iinfconstbas 49045. (Contributed by Zhi Wang, 1-Nov-2025.) |
| Ref | Expression |
|---|---|
| discsubc.j | ⊢ 𝐽 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅)) |
| discsubc.b | ⊢ 𝐵 = (Base‘𝐶) |
| discsubc.i | ⊢ 𝐼 = (Id‘𝐶) |
| discsubc.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| discsubc.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| iinfconstbas.a | ⊢ (𝜑 → 𝐴 = ((Subcat‘𝐶) ∩ {𝑗 ∣ 𝑗 Fn (𝑆 × 𝑆)})) |
| Ref | Expression |
|---|---|
| iinfconstbaslem | ⊢ (𝜑 → 𝐽 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | discsubc.j | . . . 4 ⊢ 𝐽 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅)) | |
| 2 | discsubc.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | discsubc.i | . . . 4 ⊢ 𝐼 = (Id‘𝐶) | |
| 4 | discsubc.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 5 | discsubc.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 6 | 1, 2, 3, 4, 5 | discsubc 49043 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
| 7 | 1 | discsubclem 49042 | . . . . 5 ⊢ 𝐽 Fn (𝑆 × 𝑆) |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
| 9 | fneq1 6611 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝑗 Fn (𝑆 × 𝑆) ↔ 𝐽 Fn (𝑆 × 𝑆))) | |
| 10 | 6, 8, 9 | elabd 3650 | . . 3 ⊢ (𝜑 → 𝐽 ∈ {𝑗 ∣ 𝑗 Fn (𝑆 × 𝑆)}) |
| 11 | 6, 10 | elind 4165 | . 2 ⊢ (𝜑 → 𝐽 ∈ ((Subcat‘𝐶) ∩ {𝑗 ∣ 𝑗 Fn (𝑆 × 𝑆)})) |
| 12 | iinfconstbas.a | . 2 ⊢ (𝜑 → 𝐴 = ((Subcat‘𝐶) ∩ {𝑗 ∣ 𝑗 Fn (𝑆 × 𝑆)})) | |
| 13 | 11, 12 | eleqtrrd 2832 | 1 ⊢ (𝜑 → 𝐽 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2708 ∩ cin 3915 ⊆ wss 3916 ∅c0 4298 ifcif 4490 {csn 4591 × cxp 5638 Fn wfn 6508 ‘cfv 6513 ∈ cmpo 7391 Basecbs 17185 Catccat 17631 Idccid 17632 Subcatcsubc 17777 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-pm 8804 df-ixp 8873 df-cat 17635 df-cid 17636 df-homf 17637 df-ssc 17778 df-subc 17780 |
| This theorem is referenced by: iinfconstbas 49045 |
| Copyright terms: Public domain | W3C validator |