Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinfconstbaslem Structured version   Visualization version   GIF version

Theorem iinfconstbaslem 49060
Description: Lemma for iinfconstbas 49061. (Contributed by Zhi Wang, 1-Nov-2025.)
Hypotheses
Ref Expression
discsubc.j 𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
discsubc.b 𝐵 = (Base‘𝐶)
discsubc.i 𝐼 = (Id‘𝐶)
discsubc.s (𝜑𝑆𝐵)
discsubc.c (𝜑𝐶 ∈ Cat)
iinfconstbas.a (𝜑𝐴 = ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))
Assertion
Ref Expression
iinfconstbaslem (𝜑𝐽𝐴)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐼,𝑦   𝑗,𝐽   𝑆,𝑗
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑗)   𝐴(𝑥,𝑦,𝑗)   𝐵(𝑥,𝑦,𝑗)   𝐶(𝑥,𝑦,𝑗)   𝐼(𝑗)   𝐽(𝑥,𝑦)

Proof of Theorem iinfconstbaslem
StepHypRef Expression
1 discsubc.j . . . 4 𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
2 discsubc.b . . . 4 𝐵 = (Base‘𝐶)
3 discsubc.i . . . 4 𝐼 = (Id‘𝐶)
4 discsubc.s . . . 4 (𝜑𝑆𝐵)
5 discsubc.c . . . 4 (𝜑𝐶 ∈ Cat)
61, 2, 3, 4, 5discsubc 49059 . . 3 (𝜑𝐽 ∈ (Subcat‘𝐶))
71discsubclem 49058 . . . . 5 𝐽 Fn (𝑆 × 𝑆)
87a1i 11 . . . 4 (𝜑𝐽 Fn (𝑆 × 𝑆))
9 fneq1 6573 . . . 4 (𝑗 = 𝐽 → (𝑗 Fn (𝑆 × 𝑆) ↔ 𝐽 Fn (𝑆 × 𝑆)))
106, 8, 9elabd 3637 . . 3 (𝜑𝐽 ∈ {𝑗𝑗 Fn (𝑆 × 𝑆)})
116, 10elind 4151 . 2 (𝜑𝐽 ∈ ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))
12 iinfconstbas.a . 2 (𝜑𝐴 = ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))
1311, 12eleqtrrd 2831 1 (𝜑𝐽𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cab 2707  cin 3902  wss 3903  c0 4284  ifcif 4476  {csn 4577   × cxp 5617   Fn wfn 6477  cfv 6482  cmpo 7351  Basecbs 17120  Catccat 17570  Idccid 17571  Subcatcsubc 17716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-pm 8756  df-ixp 8825  df-cat 17574  df-cid 17575  df-homf 17576  df-ssc 17717  df-subc 17719
This theorem is referenced by:  iinfconstbas  49061
  Copyright terms: Public domain W3C validator