| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iinfconstbaslem | Structured version Visualization version GIF version | ||
| Description: Lemma for iinfconstbas 49177. (Contributed by Zhi Wang, 1-Nov-2025.) |
| Ref | Expression |
|---|---|
| discsubc.j | ⊢ 𝐽 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅)) |
| discsubc.b | ⊢ 𝐵 = (Base‘𝐶) |
| discsubc.i | ⊢ 𝐼 = (Id‘𝐶) |
| discsubc.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| discsubc.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| iinfconstbas.a | ⊢ (𝜑 → 𝐴 = ((Subcat‘𝐶) ∩ {𝑗 ∣ 𝑗 Fn (𝑆 × 𝑆)})) |
| Ref | Expression |
|---|---|
| iinfconstbaslem | ⊢ (𝜑 → 𝐽 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | discsubc.j | . . . 4 ⊢ 𝐽 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅)) | |
| 2 | discsubc.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | discsubc.i | . . . 4 ⊢ 𝐼 = (Id‘𝐶) | |
| 4 | discsubc.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 5 | discsubc.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 6 | 1, 2, 3, 4, 5 | discsubc 49175 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
| 7 | 1 | discsubclem 49174 | . . . . 5 ⊢ 𝐽 Fn (𝑆 × 𝑆) |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
| 9 | fneq1 6572 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝑗 Fn (𝑆 × 𝑆) ↔ 𝐽 Fn (𝑆 × 𝑆))) | |
| 10 | 6, 8, 9 | elabd 3632 | . . 3 ⊢ (𝜑 → 𝐽 ∈ {𝑗 ∣ 𝑗 Fn (𝑆 × 𝑆)}) |
| 11 | 6, 10 | elind 4147 | . 2 ⊢ (𝜑 → 𝐽 ∈ ((Subcat‘𝐶) ∩ {𝑗 ∣ 𝑗 Fn (𝑆 × 𝑆)})) |
| 12 | iinfconstbas.a | . 2 ⊢ (𝜑 → 𝐴 = ((Subcat‘𝐶) ∩ {𝑗 ∣ 𝑗 Fn (𝑆 × 𝑆)})) | |
| 13 | 11, 12 | eleqtrrd 2834 | 1 ⊢ (𝜑 → 𝐽 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {cab 2709 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 ifcif 4472 {csn 4573 × cxp 5612 Fn wfn 6476 ‘cfv 6481 ∈ cmpo 7348 Basecbs 17120 Catccat 17570 Idccid 17571 Subcatcsubc 17716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-pm 8753 df-ixp 8822 df-cat 17574 df-cid 17575 df-homf 17576 df-ssc 17717 df-subc 17719 |
| This theorem is referenced by: iinfconstbas 49177 |
| Copyright terms: Public domain | W3C validator |