| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iinfconstbaslem | Structured version Visualization version GIF version | ||
| Description: Lemma for iinfconstbas 48927. (Contributed by Zhi Wang, 1-Nov-2025.) |
| Ref | Expression |
|---|---|
| discsubc.j | ⊢ 𝐽 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅)) |
| discsubc.b | ⊢ 𝐵 = (Base‘𝐶) |
| discsubc.i | ⊢ 𝐼 = (Id‘𝐶) |
| discsubc.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| discsubc.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| iinfconstbas.a | ⊢ (𝜑 → 𝐴 = ((Subcat‘𝐶) ∩ {𝑗 ∣ 𝑗 Fn (𝑆 × 𝑆)})) |
| Ref | Expression |
|---|---|
| iinfconstbaslem | ⊢ (𝜑 → 𝐽 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | discsubc.j | . . . 4 ⊢ 𝐽 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅)) | |
| 2 | discsubc.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | discsubc.i | . . . 4 ⊢ 𝐼 = (Id‘𝐶) | |
| 4 | discsubc.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 5 | discsubc.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 6 | 1, 2, 3, 4, 5 | discsubc 48925 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
| 7 | 1 | discsubclem 48924 | . . . . 5 ⊢ 𝐽 Fn (𝑆 × 𝑆) |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
| 9 | fneq1 6626 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝑗 Fn (𝑆 × 𝑆) ↔ 𝐽 Fn (𝑆 × 𝑆))) | |
| 10 | 6, 8, 9 | elabd 3658 | . . 3 ⊢ (𝜑 → 𝐽 ∈ {𝑗 ∣ 𝑗 Fn (𝑆 × 𝑆)}) |
| 11 | 6, 10 | elind 4173 | . 2 ⊢ (𝜑 → 𝐽 ∈ ((Subcat‘𝐶) ∩ {𝑗 ∣ 𝑗 Fn (𝑆 × 𝑆)})) |
| 12 | iinfconstbas.a | . 2 ⊢ (𝜑 → 𝐴 = ((Subcat‘𝐶) ∩ {𝑗 ∣ 𝑗 Fn (𝑆 × 𝑆)})) | |
| 13 | 11, 12 | eleqtrrd 2836 | 1 ⊢ (𝜑 → 𝐽 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {cab 2712 ∩ cin 3923 ⊆ wss 3924 ∅c0 4306 ifcif 4498 {csn 4599 × cxp 5650 Fn wfn 6523 ‘cfv 6528 ∈ cmpo 7402 Basecbs 17215 Catccat 17663 Idccid 17664 Subcatcsubc 17809 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-1st 7983 df-2nd 7984 df-pm 8838 df-ixp 8907 df-cat 17667 df-cid 17668 df-homf 17669 df-ssc 17810 df-subc 17812 |
| This theorem is referenced by: iinfconstbas 48927 |
| Copyright terms: Public domain | W3C validator |