| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iinfconstbaslem | Structured version Visualization version GIF version | ||
| Description: Lemma for iinfconstbas 49061. (Contributed by Zhi Wang, 1-Nov-2025.) |
| Ref | Expression |
|---|---|
| discsubc.j | ⊢ 𝐽 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅)) |
| discsubc.b | ⊢ 𝐵 = (Base‘𝐶) |
| discsubc.i | ⊢ 𝐼 = (Id‘𝐶) |
| discsubc.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| discsubc.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| iinfconstbas.a | ⊢ (𝜑 → 𝐴 = ((Subcat‘𝐶) ∩ {𝑗 ∣ 𝑗 Fn (𝑆 × 𝑆)})) |
| Ref | Expression |
|---|---|
| iinfconstbaslem | ⊢ (𝜑 → 𝐽 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | discsubc.j | . . . 4 ⊢ 𝐽 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅)) | |
| 2 | discsubc.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | discsubc.i | . . . 4 ⊢ 𝐼 = (Id‘𝐶) | |
| 4 | discsubc.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 5 | discsubc.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 6 | 1, 2, 3, 4, 5 | discsubc 49059 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
| 7 | 1 | discsubclem 49058 | . . . . 5 ⊢ 𝐽 Fn (𝑆 × 𝑆) |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
| 9 | fneq1 6573 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝑗 Fn (𝑆 × 𝑆) ↔ 𝐽 Fn (𝑆 × 𝑆))) | |
| 10 | 6, 8, 9 | elabd 3637 | . . 3 ⊢ (𝜑 → 𝐽 ∈ {𝑗 ∣ 𝑗 Fn (𝑆 × 𝑆)}) |
| 11 | 6, 10 | elind 4151 | . 2 ⊢ (𝜑 → 𝐽 ∈ ((Subcat‘𝐶) ∩ {𝑗 ∣ 𝑗 Fn (𝑆 × 𝑆)})) |
| 12 | iinfconstbas.a | . 2 ⊢ (𝜑 → 𝐴 = ((Subcat‘𝐶) ∩ {𝑗 ∣ 𝑗 Fn (𝑆 × 𝑆)})) | |
| 13 | 11, 12 | eleqtrrd 2831 | 1 ⊢ (𝜑 → 𝐽 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2707 ∩ cin 3902 ⊆ wss 3903 ∅c0 4284 ifcif 4476 {csn 4577 × cxp 5617 Fn wfn 6477 ‘cfv 6482 ∈ cmpo 7351 Basecbs 17120 Catccat 17570 Idccid 17571 Subcatcsubc 17716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-pm 8756 df-ixp 8825 df-cat 17574 df-cid 17575 df-homf 17576 df-ssc 17717 df-subc 17719 |
| This theorem is referenced by: iinfconstbas 49061 |
| Copyright terms: Public domain | W3C validator |