| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > infsubc2d | Structured version Visualization version GIF version | ||
| Description: The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.) |
| Ref | Expression |
|---|---|
| infsubc2d.1 | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
| infsubc2d.2 | ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) |
| infsubc2d.3 | ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) |
| infsubc2d.4 | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
| Ref | Expression |
|---|---|
| infsubc2d | ⊢ (𝜑 → (𝑥 ∈ (𝑆 ∩ 𝑇), 𝑦 ∈ (𝑆 ∩ 𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infsubc2d.1 | . . . . . . 7 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
| 2 | 1 | fndmd 6581 | . . . . . 6 ⊢ (𝜑 → dom 𝐻 = (𝑆 × 𝑆)) |
| 3 | 2 | dmeqd 5840 | . . . . 5 ⊢ (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆)) |
| 4 | dmxpid 5865 | . . . . 5 ⊢ dom (𝑆 × 𝑆) = 𝑆 | |
| 5 | 3, 4 | eqtrdi 2782 | . . . 4 ⊢ (𝜑 → dom dom 𝐻 = 𝑆) |
| 6 | infsubc2d.2 | . . . . . . 7 ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) | |
| 7 | 6 | fndmd 6581 | . . . . . 6 ⊢ (𝜑 → dom 𝐽 = (𝑇 × 𝑇)) |
| 8 | 7 | dmeqd 5840 | . . . . 5 ⊢ (𝜑 → dom dom 𝐽 = dom (𝑇 × 𝑇)) |
| 9 | dmxpid 5865 | . . . . 5 ⊢ dom (𝑇 × 𝑇) = 𝑇 | |
| 10 | 8, 9 | eqtrdi 2782 | . . . 4 ⊢ (𝜑 → dom dom 𝐽 = 𝑇) |
| 11 | 5, 10 | ineq12d 4166 | . . 3 ⊢ (𝜑 → (dom dom 𝐻 ∩ dom dom 𝐽) = (𝑆 ∩ 𝑇)) |
| 12 | mpoeq12 7414 | . . 3 ⊢ (((dom dom 𝐻 ∩ dom dom 𝐽) = (𝑆 ∩ 𝑇) ∧ (dom dom 𝐻 ∩ dom dom 𝐽) = (𝑆 ∩ 𝑇)) → (𝑥 ∈ (dom dom 𝐻 ∩ dom dom 𝐽), 𝑦 ∈ (dom dom 𝐻 ∩ dom dom 𝐽) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) = (𝑥 ∈ (𝑆 ∩ 𝑇), 𝑦 ∈ (𝑆 ∩ 𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦)))) | |
| 13 | 11, 11, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑥 ∈ (dom dom 𝐻 ∩ dom dom 𝐽), 𝑦 ∈ (dom dom 𝐻 ∩ dom dom 𝐽) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) = (𝑥 ∈ (𝑆 ∩ 𝑇), 𝑦 ∈ (𝑆 ∩ 𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦)))) |
| 14 | infsubc2d.3 | . . 3 ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) | |
| 15 | infsubc2d.4 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
| 16 | infsubc2 49093 | . . 3 ⊢ ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom dom 𝐻 ∩ dom dom 𝐽), 𝑦 ∈ (dom dom 𝐻 ∩ dom dom 𝐽) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶)) | |
| 17 | 14, 15, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑥 ∈ (dom dom 𝐻 ∩ dom dom 𝐽), 𝑦 ∈ (dom dom 𝐻 ∩ dom dom 𝐽) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶)) |
| 18 | 13, 17 | eqeltrrd 2832 | 1 ⊢ (𝜑 → (𝑥 ∈ (𝑆 ∩ 𝑇), 𝑦 ∈ (𝑆 ∩ 𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 × cxp 5609 dom cdm 5611 Fn wfn 6471 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 Subcatcsubc 17711 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-pm 8748 df-ixp 8817 df-ssc 17712 df-subc 17714 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |