| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > infsubc2d | Structured version Visualization version GIF version | ||
| Description: The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.) |
| Ref | Expression |
|---|---|
| infsubc2d.1 | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
| infsubc2d.2 | ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) |
| infsubc2d.3 | ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) |
| infsubc2d.4 | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
| Ref | Expression |
|---|---|
| infsubc2d | ⊢ (𝜑 → (𝑥 ∈ (𝑆 ∩ 𝑇), 𝑦 ∈ (𝑆 ∩ 𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infsubc2d.1 | . . . . . . 7 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
| 2 | 1 | fndmd 6639 | . . . . . 6 ⊢ (𝜑 → dom 𝐻 = (𝑆 × 𝑆)) |
| 3 | 2 | dmeqd 5882 | . . . . 5 ⊢ (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆)) |
| 4 | dmxpid 5907 | . . . . 5 ⊢ dom (𝑆 × 𝑆) = 𝑆 | |
| 5 | 3, 4 | eqtrdi 2785 | . . . 4 ⊢ (𝜑 → dom dom 𝐻 = 𝑆) |
| 6 | infsubc2d.2 | . . . . . . 7 ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) | |
| 7 | 6 | fndmd 6639 | . . . . . 6 ⊢ (𝜑 → dom 𝐽 = (𝑇 × 𝑇)) |
| 8 | 7 | dmeqd 5882 | . . . . 5 ⊢ (𝜑 → dom dom 𝐽 = dom (𝑇 × 𝑇)) |
| 9 | dmxpid 5907 | . . . . 5 ⊢ dom (𝑇 × 𝑇) = 𝑇 | |
| 10 | 8, 9 | eqtrdi 2785 | . . . 4 ⊢ (𝜑 → dom dom 𝐽 = 𝑇) |
| 11 | 5, 10 | ineq12d 4194 | . . 3 ⊢ (𝜑 → (dom dom 𝐻 ∩ dom dom 𝐽) = (𝑆 ∩ 𝑇)) |
| 12 | mpoeq12 7474 | . . 3 ⊢ (((dom dom 𝐻 ∩ dom dom 𝐽) = (𝑆 ∩ 𝑇) ∧ (dom dom 𝐻 ∩ dom dom 𝐽) = (𝑆 ∩ 𝑇)) → (𝑥 ∈ (dom dom 𝐻 ∩ dom dom 𝐽), 𝑦 ∈ (dom dom 𝐻 ∩ dom dom 𝐽) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) = (𝑥 ∈ (𝑆 ∩ 𝑇), 𝑦 ∈ (𝑆 ∩ 𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦)))) | |
| 13 | 11, 11, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑥 ∈ (dom dom 𝐻 ∩ dom dom 𝐽), 𝑦 ∈ (dom dom 𝐻 ∩ dom dom 𝐽) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) = (𝑥 ∈ (𝑆 ∩ 𝑇), 𝑦 ∈ (𝑆 ∩ 𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦)))) |
| 14 | infsubc2d.3 | . . 3 ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) | |
| 15 | infsubc2d.4 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
| 16 | infsubc2 48906 | . . 3 ⊢ ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom dom 𝐻 ∩ dom dom 𝐽), 𝑦 ∈ (dom dom 𝐻 ∩ dom dom 𝐽) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶)) | |
| 17 | 14, 15, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑥 ∈ (dom dom 𝐻 ∩ dom dom 𝐽), 𝑦 ∈ (dom dom 𝐻 ∩ dom dom 𝐽) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶)) |
| 18 | 13, 17 | eqeltrrd 2834 | 1 ⊢ (𝜑 → (𝑥 ∈ (𝑆 ∩ 𝑇), 𝑦 ∈ (𝑆 ∩ 𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∩ cin 3923 × cxp 5649 dom cdm 5651 Fn wfn 6522 ‘cfv 6527 (class class class)co 7399 ∈ cmpo 7401 Subcatcsubc 17807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-iin 4967 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-oprab 7403 df-mpo 7404 df-1st 7982 df-2nd 7983 df-pm 8837 df-ixp 8906 df-ssc 17808 df-subc 17810 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |