Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infsubc2d Structured version   Visualization version   GIF version

Theorem infsubc2d 49047
Description: The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.)
Hypotheses
Ref Expression
infsubc2d.1 (𝜑𝐻 Fn (𝑆 × 𝑆))
infsubc2d.2 (𝜑𝐽 Fn (𝑇 × 𝑇))
infsubc2d.3 (𝜑𝐻 ∈ (Subcat‘𝐶))
infsubc2d.4 (𝜑𝐽 ∈ (Subcat‘𝐶))
Assertion
Ref Expression
infsubc2d (𝜑 → (𝑥 ∈ (𝑆𝑇), 𝑦 ∈ (𝑆𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶))
Distinct variable groups:   𝑥,𝐶,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem infsubc2d
StepHypRef Expression
1 infsubc2d.1 . . . . . . 7 (𝜑𝐻 Fn (𝑆 × 𝑆))
21fndmd 6587 . . . . . 6 (𝜑 → dom 𝐻 = (𝑆 × 𝑆))
32dmeqd 5848 . . . . 5 (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆))
4 dmxpid 5872 . . . . 5 dom (𝑆 × 𝑆) = 𝑆
53, 4eqtrdi 2780 . . . 4 (𝜑 → dom dom 𝐻 = 𝑆)
6 infsubc2d.2 . . . . . . 7 (𝜑𝐽 Fn (𝑇 × 𝑇))
76fndmd 6587 . . . . . 6 (𝜑 → dom 𝐽 = (𝑇 × 𝑇))
87dmeqd 5848 . . . . 5 (𝜑 → dom dom 𝐽 = dom (𝑇 × 𝑇))
9 dmxpid 5872 . . . . 5 dom (𝑇 × 𝑇) = 𝑇
108, 9eqtrdi 2780 . . . 4 (𝜑 → dom dom 𝐽 = 𝑇)
115, 10ineq12d 4172 . . 3 (𝜑 → (dom dom 𝐻 ∩ dom dom 𝐽) = (𝑆𝑇))
12 mpoeq12 7422 . . 3 (((dom dom 𝐻 ∩ dom dom 𝐽) = (𝑆𝑇) ∧ (dom dom 𝐻 ∩ dom dom 𝐽) = (𝑆𝑇)) → (𝑥 ∈ (dom dom 𝐻 ∩ dom dom 𝐽), 𝑦 ∈ (dom dom 𝐻 ∩ dom dom 𝐽) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) = (𝑥 ∈ (𝑆𝑇), 𝑦 ∈ (𝑆𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))))
1311, 11, 12syl2anc 584 . 2 (𝜑 → (𝑥 ∈ (dom dom 𝐻 ∩ dom dom 𝐽), 𝑦 ∈ (dom dom 𝐻 ∩ dom dom 𝐽) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) = (𝑥 ∈ (𝑆𝑇), 𝑦 ∈ (𝑆𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))))
14 infsubc2d.3 . . 3 (𝜑𝐻 ∈ (Subcat‘𝐶))
15 infsubc2d.4 . . 3 (𝜑𝐽 ∈ (Subcat‘𝐶))
16 infsubc2 49046 . . 3 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom dom 𝐻 ∩ dom dom 𝐽), 𝑦 ∈ (dom dom 𝐻 ∩ dom dom 𝐽) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶))
1714, 15, 16syl2anc 584 . 2 (𝜑 → (𝑥 ∈ (dom dom 𝐻 ∩ dom dom 𝐽), 𝑦 ∈ (dom dom 𝐻 ∩ dom dom 𝐽) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶))
1813, 17eqeltrrd 2829 1 (𝜑 → (𝑥 ∈ (𝑆𝑇), 𝑦 ∈ (𝑆𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cin 3902   × cxp 5617  dom cdm 5619   Fn wfn 6477  cfv 6482  (class class class)co 7349  cmpo 7351  Subcatcsubc 17716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-pm 8756  df-ixp 8825  df-ssc 17717  df-subc 17719
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator