Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infsubc2d Structured version   Visualization version   GIF version

Theorem infsubc2d 49094
Description: The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.)
Hypotheses
Ref Expression
infsubc2d.1 (𝜑𝐻 Fn (𝑆 × 𝑆))
infsubc2d.2 (𝜑𝐽 Fn (𝑇 × 𝑇))
infsubc2d.3 (𝜑𝐻 ∈ (Subcat‘𝐶))
infsubc2d.4 (𝜑𝐽 ∈ (Subcat‘𝐶))
Assertion
Ref Expression
infsubc2d (𝜑 → (𝑥 ∈ (𝑆𝑇), 𝑦 ∈ (𝑆𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶))
Distinct variable groups:   𝑥,𝐶,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem infsubc2d
StepHypRef Expression
1 infsubc2d.1 . . . . . . 7 (𝜑𝐻 Fn (𝑆 × 𝑆))
21fndmd 6581 . . . . . 6 (𝜑 → dom 𝐻 = (𝑆 × 𝑆))
32dmeqd 5840 . . . . 5 (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆))
4 dmxpid 5865 . . . . 5 dom (𝑆 × 𝑆) = 𝑆
53, 4eqtrdi 2782 . . . 4 (𝜑 → dom dom 𝐻 = 𝑆)
6 infsubc2d.2 . . . . . . 7 (𝜑𝐽 Fn (𝑇 × 𝑇))
76fndmd 6581 . . . . . 6 (𝜑 → dom 𝐽 = (𝑇 × 𝑇))
87dmeqd 5840 . . . . 5 (𝜑 → dom dom 𝐽 = dom (𝑇 × 𝑇))
9 dmxpid 5865 . . . . 5 dom (𝑇 × 𝑇) = 𝑇
108, 9eqtrdi 2782 . . . 4 (𝜑 → dom dom 𝐽 = 𝑇)
115, 10ineq12d 4166 . . 3 (𝜑 → (dom dom 𝐻 ∩ dom dom 𝐽) = (𝑆𝑇))
12 mpoeq12 7414 . . 3 (((dom dom 𝐻 ∩ dom dom 𝐽) = (𝑆𝑇) ∧ (dom dom 𝐻 ∩ dom dom 𝐽) = (𝑆𝑇)) → (𝑥 ∈ (dom dom 𝐻 ∩ dom dom 𝐽), 𝑦 ∈ (dom dom 𝐻 ∩ dom dom 𝐽) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) = (𝑥 ∈ (𝑆𝑇), 𝑦 ∈ (𝑆𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))))
1311, 11, 12syl2anc 584 . 2 (𝜑 → (𝑥 ∈ (dom dom 𝐻 ∩ dom dom 𝐽), 𝑦 ∈ (dom dom 𝐻 ∩ dom dom 𝐽) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) = (𝑥 ∈ (𝑆𝑇), 𝑦 ∈ (𝑆𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))))
14 infsubc2d.3 . . 3 (𝜑𝐻 ∈ (Subcat‘𝐶))
15 infsubc2d.4 . . 3 (𝜑𝐽 ∈ (Subcat‘𝐶))
16 infsubc2 49093 . . 3 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom dom 𝐻 ∩ dom dom 𝐽), 𝑦 ∈ (dom dom 𝐻 ∩ dom dom 𝐽) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶))
1714, 15, 16syl2anc 584 . 2 (𝜑 → (𝑥 ∈ (dom dom 𝐻 ∩ dom dom 𝐽), 𝑦 ∈ (dom dom 𝐻 ∩ dom dom 𝐽) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶))
1813, 17eqeltrrd 2832 1 (𝜑 → (𝑥 ∈ (𝑆𝑇), 𝑦 ∈ (𝑆𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cin 3896   × cxp 5609  dom cdm 5611   Fn wfn 6471  cfv 6476  (class class class)co 7341  cmpo 7343  Subcatcsubc 17711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-pm 8748  df-ixp 8817  df-ssc 17712  df-subc 17714
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator