Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infsubc2d Structured version   Visualization version   GIF version

Theorem infsubc2d 49039
Description: The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.)
Hypotheses
Ref Expression
infsubc2d.1 (𝜑𝐻 Fn (𝑆 × 𝑆))
infsubc2d.2 (𝜑𝐽 Fn (𝑇 × 𝑇))
infsubc2d.3 (𝜑𝐻 ∈ (Subcat‘𝐶))
infsubc2d.4 (𝜑𝐽 ∈ (Subcat‘𝐶))
Assertion
Ref Expression
infsubc2d (𝜑 → (𝑥 ∈ (𝑆𝑇), 𝑦 ∈ (𝑆𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶))
Distinct variable groups:   𝑥,𝐶,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem infsubc2d
StepHypRef Expression
1 infsubc2d.1 . . . . . . 7 (𝜑𝐻 Fn (𝑆 × 𝑆))
21fndmd 6625 . . . . . 6 (𝜑 → dom 𝐻 = (𝑆 × 𝑆))
32dmeqd 5871 . . . . 5 (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆))
4 dmxpid 5896 . . . . 5 dom (𝑆 × 𝑆) = 𝑆
53, 4eqtrdi 2781 . . . 4 (𝜑 → dom dom 𝐻 = 𝑆)
6 infsubc2d.2 . . . . . . 7 (𝜑𝐽 Fn (𝑇 × 𝑇))
76fndmd 6625 . . . . . 6 (𝜑 → dom 𝐽 = (𝑇 × 𝑇))
87dmeqd 5871 . . . . 5 (𝜑 → dom dom 𝐽 = dom (𝑇 × 𝑇))
9 dmxpid 5896 . . . . 5 dom (𝑇 × 𝑇) = 𝑇
108, 9eqtrdi 2781 . . . 4 (𝜑 → dom dom 𝐽 = 𝑇)
115, 10ineq12d 4186 . . 3 (𝜑 → (dom dom 𝐻 ∩ dom dom 𝐽) = (𝑆𝑇))
12 mpoeq12 7464 . . 3 (((dom dom 𝐻 ∩ dom dom 𝐽) = (𝑆𝑇) ∧ (dom dom 𝐻 ∩ dom dom 𝐽) = (𝑆𝑇)) → (𝑥 ∈ (dom dom 𝐻 ∩ dom dom 𝐽), 𝑦 ∈ (dom dom 𝐻 ∩ dom dom 𝐽) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) = (𝑥 ∈ (𝑆𝑇), 𝑦 ∈ (𝑆𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))))
1311, 11, 12syl2anc 584 . 2 (𝜑 → (𝑥 ∈ (dom dom 𝐻 ∩ dom dom 𝐽), 𝑦 ∈ (dom dom 𝐻 ∩ dom dom 𝐽) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) = (𝑥 ∈ (𝑆𝑇), 𝑦 ∈ (𝑆𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))))
14 infsubc2d.3 . . 3 (𝜑𝐻 ∈ (Subcat‘𝐶))
15 infsubc2d.4 . . 3 (𝜑𝐽 ∈ (Subcat‘𝐶))
16 infsubc2 49038 . . 3 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom dom 𝐻 ∩ dom dom 𝐽), 𝑦 ∈ (dom dom 𝐻 ∩ dom dom 𝐽) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶))
1714, 15, 16syl2anc 584 . 2 (𝜑 → (𝑥 ∈ (dom dom 𝐻 ∩ dom dom 𝐽), 𝑦 ∈ (dom dom 𝐻 ∩ dom dom 𝐽) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶))
1813, 17eqeltrrd 2830 1 (𝜑 → (𝑥 ∈ (𝑆𝑇), 𝑦 ∈ (𝑆𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cin 3915   × cxp 5638  dom cdm 5640   Fn wfn 6508  cfv 6513  (class class class)co 7389  cmpo 7391  Subcatcsubc 17777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-pm 8804  df-ixp 8873  df-ssc 17778  df-subc 17780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator