| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > infsubc2d | Structured version Visualization version GIF version | ||
| Description: The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.) |
| Ref | Expression |
|---|---|
| infsubc2d.1 | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
| infsubc2d.2 | ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) |
| infsubc2d.3 | ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) |
| infsubc2d.4 | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
| Ref | Expression |
|---|---|
| infsubc2d | ⊢ (𝜑 → (𝑥 ∈ (𝑆 ∩ 𝑇), 𝑦 ∈ (𝑆 ∩ 𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infsubc2d.1 | . . . . . . 7 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
| 2 | 1 | fndmd 6605 | . . . . . 6 ⊢ (𝜑 → dom 𝐻 = (𝑆 × 𝑆)) |
| 3 | 2 | dmeqd 5859 | . . . . 5 ⊢ (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆)) |
| 4 | dmxpid 5883 | . . . . 5 ⊢ dom (𝑆 × 𝑆) = 𝑆 | |
| 5 | 3, 4 | eqtrdi 2780 | . . . 4 ⊢ (𝜑 → dom dom 𝐻 = 𝑆) |
| 6 | infsubc2d.2 | . . . . . . 7 ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) | |
| 7 | 6 | fndmd 6605 | . . . . . 6 ⊢ (𝜑 → dom 𝐽 = (𝑇 × 𝑇)) |
| 8 | 7 | dmeqd 5859 | . . . . 5 ⊢ (𝜑 → dom dom 𝐽 = dom (𝑇 × 𝑇)) |
| 9 | dmxpid 5883 | . . . . 5 ⊢ dom (𝑇 × 𝑇) = 𝑇 | |
| 10 | 8, 9 | eqtrdi 2780 | . . . 4 ⊢ (𝜑 → dom dom 𝐽 = 𝑇) |
| 11 | 5, 10 | ineq12d 4180 | . . 3 ⊢ (𝜑 → (dom dom 𝐻 ∩ dom dom 𝐽) = (𝑆 ∩ 𝑇)) |
| 12 | mpoeq12 7442 | . . 3 ⊢ (((dom dom 𝐻 ∩ dom dom 𝐽) = (𝑆 ∩ 𝑇) ∧ (dom dom 𝐻 ∩ dom dom 𝐽) = (𝑆 ∩ 𝑇)) → (𝑥 ∈ (dom dom 𝐻 ∩ dom dom 𝐽), 𝑦 ∈ (dom dom 𝐻 ∩ dom dom 𝐽) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) = (𝑥 ∈ (𝑆 ∩ 𝑇), 𝑦 ∈ (𝑆 ∩ 𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦)))) | |
| 13 | 11, 11, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑥 ∈ (dom dom 𝐻 ∩ dom dom 𝐽), 𝑦 ∈ (dom dom 𝐻 ∩ dom dom 𝐽) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) = (𝑥 ∈ (𝑆 ∩ 𝑇), 𝑦 ∈ (𝑆 ∩ 𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦)))) |
| 14 | infsubc2d.3 | . . 3 ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) | |
| 15 | infsubc2d.4 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
| 16 | infsubc2 49023 | . . 3 ⊢ ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom dom 𝐻 ∩ dom dom 𝐽), 𝑦 ∈ (dom dom 𝐻 ∩ dom dom 𝐽) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶)) | |
| 17 | 14, 15, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑥 ∈ (dom dom 𝐻 ∩ dom dom 𝐽), 𝑦 ∈ (dom dom 𝐻 ∩ dom dom 𝐽) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶)) |
| 18 | 13, 17 | eqeltrrd 2829 | 1 ⊢ (𝜑 → (𝑥 ∈ (𝑆 ∩ 𝑇), 𝑦 ∈ (𝑆 ∩ 𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 × cxp 5629 dom cdm 5631 Fn wfn 6494 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 Subcatcsubc 17747 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-pm 8779 df-ixp 8848 df-ssc 17748 df-subc 17750 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |