MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmpogaOLD Structured version   Visualization version   GIF version

Theorem dmmpogaOLD 7887
Description: Obsolete version of dmmpoga 7886 as of 29-May-2024. (Contributed by Alexander van der Vekens, 10-Feb-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
dmmpog.f 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
dmmpogaOLD (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → dom 𝐹 = (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem dmmpogaOLD
StepHypRef Expression
1 dmmpog.f . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21fnmpo 7882 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝑉𝐹 Fn (𝐴 × 𝐵))
3 fndm 6520 . 2 (𝐹 Fn (𝐴 × 𝐵) → dom 𝐹 = (𝐴 × 𝐵))
42, 3syl 17 1 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → dom 𝐹 = (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wral 3063   × cxp 5578  dom cdm 5580   Fn wfn 6413  cmpo 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator