MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmpoga Structured version   Visualization version   GIF version

Theorem dmmpoga 8114
Description: Domain of an operation given by the maps-to notation, closed form of dmmpo 8112. (Contributed by Alexander van der Vekens, 10-Feb-2019.) (Proof shortened by Lammen, 29-May-2024.)
Hypothesis
Ref Expression
dmmpog.f 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
dmmpoga (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → dom 𝐹 = (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem dmmpoga
StepHypRef Expression
1 dmmpog.f . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21fnmpo 8110 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝑉𝐹 Fn (𝐴 × 𝐵))
32fndmd 6684 1 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → dom 𝐹 = (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wral 3067   × cxp 5698  dom cdm 5700  cmpo 7450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031
This theorem is referenced by:  dmmpog  8115  mpoexw  8119  mpocurryd  8310  psdmul  22193  mamudm  22420  mavmuldm  22577  mavmul0g  22580
  Copyright terms: Public domain W3C validator