Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noinfbday Structured version   Visualization version   GIF version

Theorem noinfbday 33488
Description: Birthday bounding law for surreal infimum. (Contributed by Scott Fenton, 8-Aug-2024.)
Hypothesis
Ref Expression
noinfbday.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbday (((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) → ( bday 𝑇) ⊆ 𝑂)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑔,𝑉   𝑥,𝑣,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑂(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfbday
Dummy variables 𝑝 𝑞 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noinfbday.1 . . . . 5 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21noinfno 33486 . . . 4 ((𝐵 No 𝐵𝑉) → 𝑇 No )
3 bdayval 33416 . . . 4 (𝑇 No → ( bday 𝑇) = dom 𝑇)
42, 3syl 17 . . 3 ((𝐵 No 𝐵𝑉) → ( bday 𝑇) = dom 𝑇)
54adantr 484 . 2 (((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) → ( bday 𝑇) = dom 𝑇)
6 iftrue 4426 . . . . . . . 8 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
71, 6syl5eq 2805 . . . . . . 7 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥𝑇 = ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
87dmeqd 5745 . . . . . 6 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = dom ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
9 1oex 8120 . . . . . . . . 9 1o ∈ V
109dmsnop 6045 . . . . . . . 8 dom {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩} = {dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)}
1110uneq2i 4065 . . . . . . 7 (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ dom {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) = (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)})
12 dmun 5750 . . . . . . 7 dom ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) = (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ dom {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩})
13 df-suc 6175 . . . . . . 7 suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)})
1411, 12, 133eqtr4i 2791 . . . . . 6 dom ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) = suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
158, 14eqtrdi 2809 . . . . 5 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
1615adantr 484 . . . 4 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → dom 𝑇 = suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
17 simprrl 780 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → 𝑂 ∈ On)
18 eloni 6179 . . . . . 6 (𝑂 ∈ On → Ord 𝑂)
1917, 18syl 17 . . . . 5 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → Ord 𝑂)
20 simprll 778 . . . . . . . 8 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → 𝐵 No )
21 simpl 486 . . . . . . . . . 10 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
22 nominmo 33467 . . . . . . . . . . 11 (𝐵 No → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2320, 22syl 17 . . . . . . . . . 10 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
24 reu5 3340 . . . . . . . . . 10 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ↔ (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
2521, 23, 24sylanbrc 586 . . . . . . . . 9 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
26 riotacl 7125 . . . . . . . . 9 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ 𝐵)
2725, 26syl 17 . . . . . . . 8 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ 𝐵)
2820, 27sseldd 3893 . . . . . . 7 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No )
29 bdayval 33416 . . . . . . 7 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No → ( bday ‘(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) = dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
3028, 29syl 17 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → ( bday ‘(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) = dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
31 simprrr 781 . . . . . . 7 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → ( bday 𝐵) ⊆ 𝑂)
32 bdayfo 33445 . . . . . . . . 9 bday : No onto→On
33 fofn 6578 . . . . . . . . 9 ( bday : No onto→On → bday Fn No )
3432, 33ax-mp 5 . . . . . . . 8 bday Fn No
35 fnfvima 6987 . . . . . . . 8 (( bday Fn No 𝐵 No ∧ (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ 𝐵) → ( bday ‘(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) ∈ ( bday 𝐵))
3634, 20, 27, 35mp3an2i 1463 . . . . . . 7 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → ( bday ‘(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) ∈ ( bday 𝐵))
3731, 36sseldd 3893 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → ( bday ‘(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) ∈ 𝑂)
3830, 37eqeltrrd 2853 . . . . 5 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ 𝑂)
39 ordsucss 7532 . . . . 5 (Ord 𝑂 → (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ 𝑂 → suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ⊆ 𝑂))
4019, 38, 39sylc 65 . . . 4 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ⊆ 𝑂)
4116, 40eqsstrd 3930 . . 3 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → dom 𝑇𝑂)
421noinfdm 33487 . . . . 5 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})
4342adantr 484 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → dom 𝑇 = {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})
44 simplrl 776 . . . . . . . . . . 11 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → 𝑂 ∈ On)
4544, 18syl 17 . . . . . . . . . 10 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → Ord 𝑂)
46 ssel2 3887 . . . . . . . . . . . . 13 ((𝐵 No 𝑝𝐵) → 𝑝 No )
4746ad4ant14 751 . . . . . . . . . . . 12 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → 𝑝 No )
48 bdayval 33416 . . . . . . . . . . . 12 (𝑝 No → ( bday 𝑝) = dom 𝑝)
4947, 48syl 17 . . . . . . . . . . 11 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → ( bday 𝑝) = dom 𝑝)
50 simplrr 777 . . . . . . . . . . . 12 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → ( bday 𝐵) ⊆ 𝑂)
51 fnfvima 6987 . . . . . . . . . . . . . 14 (( bday Fn No 𝐵 No 𝑝𝐵) → ( bday 𝑝) ∈ ( bday 𝐵))
5234, 51mp3an1 1445 . . . . . . . . . . . . 13 ((𝐵 No 𝑝𝐵) → ( bday 𝑝) ∈ ( bday 𝐵))
5352ad4ant14 751 . . . . . . . . . . . 12 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → ( bday 𝑝) ∈ ( bday 𝐵))
5450, 53sseldd 3893 . . . . . . . . . . 11 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → ( bday 𝑝) ∈ 𝑂)
5549, 54eqeltrrd 2853 . . . . . . . . . 10 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → dom 𝑝𝑂)
56 ordelss 6185 . . . . . . . . . 10 ((Ord 𝑂 ∧ dom 𝑝𝑂) → dom 𝑝𝑂)
5745, 55, 56syl2anc 587 . . . . . . . . 9 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → dom 𝑝𝑂)
5857sseld 3891 . . . . . . . 8 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → (𝑧 ∈ dom 𝑝𝑧𝑂))
5958adantrd 495 . . . . . . 7 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → ((𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) → 𝑧𝑂))
6059rexlimdva 3208 . . . . . 6 (((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) → (∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) → 𝑧𝑂))
6160abssdv 3973 . . . . 5 (((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) → {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ⊆ 𝑂)
6261adantl 485 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ⊆ 𝑂)
6343, 62eqsstrd 3930 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → dom 𝑇𝑂)
6441, 63pm2.61ian 811 . 2 (((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) → dom 𝑇𝑂)
655, 64eqsstrd 3930 1 (((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) → ( bday 𝑇) ⊆ 𝑂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  {cab 2735  wral 3070  wrex 3071  ∃!wreu 3072  ∃*wrmo 3073  cun 3856  wss 3858  ifcif 4420  {csn 4522  cop 4528   class class class wbr 5032  cmpt 5112  dom cdm 5524  cres 5526  cima 5527  Ord word 6168  Oncon0 6169  suc csuc 6171  cio 6292   Fn wfn 6330  ontowfo 6333  cfv 6335  crio 7107  1oc1o 8105   No csur 33408   <s cslt 33409   bday cbday 33410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-ord 6172  df-on 6173  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-1o 8112  df-2o 8113  df-no 33411  df-slt 33412  df-bday 33413
This theorem is referenced by:  noetalem1  33509
  Copyright terms: Public domain W3C validator