MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfbday Structured version   Visualization version   GIF version

Theorem noinfbday 27639
Description: Birthday bounding law for surreal infimum. (Contributed by Scott Fenton, 8-Aug-2024.)
Hypothesis
Ref Expression
noinfbday.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbday (((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) → ( bday 𝑇) ⊆ 𝑂)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑔,𝑉
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑂(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfbday
Dummy variables 𝑝 𝑧 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noinfbday.1 . . . . 5 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21noinfno 27637 . . . 4 ((𝐵 No 𝐵𝑉) → 𝑇 No )
3 bdayval 27567 . . . 4 (𝑇 No → ( bday 𝑇) = dom 𝑇)
42, 3syl 17 . . 3 ((𝐵 No 𝐵𝑉) → ( bday 𝑇) = dom 𝑇)
54adantr 480 . 2 (((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) → ( bday 𝑇) = dom 𝑇)
6 iftrue 4497 . . . . . . . 8 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
71, 6eqtrid 2777 . . . . . . 7 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥𝑇 = ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
87dmeqd 5872 . . . . . 6 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = dom ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
9 1oex 8447 . . . . . . . . 9 1o ∈ V
109dmsnop 6192 . . . . . . . 8 dom {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩} = {dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)}
1110uneq2i 4131 . . . . . . 7 (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ dom {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) = (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)})
12 dmun 5877 . . . . . . 7 dom ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) = (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ dom {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩})
13 df-suc 6341 . . . . . . 7 suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)})
1411, 12, 133eqtr4i 2763 . . . . . 6 dom ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) = suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
158, 14eqtrdi 2781 . . . . 5 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
1615adantr 480 . . . 4 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → dom 𝑇 = suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
17 simprrl 780 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → 𝑂 ∈ On)
18 eloni 6345 . . . . . 6 (𝑂 ∈ On → Ord 𝑂)
1917, 18syl 17 . . . . 5 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → Ord 𝑂)
20 simprll 778 . . . . . . . 8 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → 𝐵 No )
21 simpl 482 . . . . . . . . . 10 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
22 nominmo 27618 . . . . . . . . . . 11 (𝐵 No → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2320, 22syl 17 . . . . . . . . . 10 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
24 reu5 3358 . . . . . . . . . 10 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ↔ (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
2521, 23, 24sylanbrc 583 . . . . . . . . 9 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
26 riotacl 7364 . . . . . . . . 9 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ 𝐵)
2725, 26syl 17 . . . . . . . 8 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ 𝐵)
2820, 27sseldd 3950 . . . . . . 7 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No )
29 bdayval 27567 . . . . . . 7 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No → ( bday ‘(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) = dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
3028, 29syl 17 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → ( bday ‘(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) = dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
31 simprrr 781 . . . . . . 7 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → ( bday 𝐵) ⊆ 𝑂)
32 bdayfo 27596 . . . . . . . . 9 bday : No onto→On
33 fofn 6777 . . . . . . . . 9 ( bday : No onto→On → bday Fn No )
3432, 33ax-mp 5 . . . . . . . 8 bday Fn No
35 fnfvima 7210 . . . . . . . 8 (( bday Fn No 𝐵 No ∧ (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ 𝐵) → ( bday ‘(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) ∈ ( bday 𝐵))
3634, 20, 27, 35mp3an2i 1468 . . . . . . 7 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → ( bday ‘(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) ∈ ( bday 𝐵))
3731, 36sseldd 3950 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → ( bday ‘(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) ∈ 𝑂)
3830, 37eqeltrrd 2830 . . . . 5 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ 𝑂)
39 ordsucss 7796 . . . . 5 (Ord 𝑂 → (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ 𝑂 → suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ⊆ 𝑂))
4019, 38, 39sylc 65 . . . 4 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ⊆ 𝑂)
4116, 40eqsstrd 3984 . . 3 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → dom 𝑇𝑂)
421noinfdm 27638 . . . . 5 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})
4342adantr 480 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → dom 𝑇 = {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})
44 simplrl 776 . . . . . . . . . . 11 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → 𝑂 ∈ On)
4544, 18syl 17 . . . . . . . . . 10 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → Ord 𝑂)
46 ssel2 3944 . . . . . . . . . . . . 13 ((𝐵 No 𝑝𝐵) → 𝑝 No )
4746ad4ant14 752 . . . . . . . . . . . 12 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → 𝑝 No )
48 bdayval 27567 . . . . . . . . . . . 12 (𝑝 No → ( bday 𝑝) = dom 𝑝)
4947, 48syl 17 . . . . . . . . . . 11 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → ( bday 𝑝) = dom 𝑝)
50 simplrr 777 . . . . . . . . . . . 12 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → ( bday 𝐵) ⊆ 𝑂)
51 fnfvima 7210 . . . . . . . . . . . . . 14 (( bday Fn No 𝐵 No 𝑝𝐵) → ( bday 𝑝) ∈ ( bday 𝐵))
5234, 51mp3an1 1450 . . . . . . . . . . . . 13 ((𝐵 No 𝑝𝐵) → ( bday 𝑝) ∈ ( bday 𝐵))
5352ad4ant14 752 . . . . . . . . . . . 12 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → ( bday 𝑝) ∈ ( bday 𝐵))
5450, 53sseldd 3950 . . . . . . . . . . 11 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → ( bday 𝑝) ∈ 𝑂)
5549, 54eqeltrrd 2830 . . . . . . . . . 10 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → dom 𝑝𝑂)
56 ordelss 6351 . . . . . . . . . 10 ((Ord 𝑂 ∧ dom 𝑝𝑂) → dom 𝑝𝑂)
5745, 55, 56syl2anc 584 . . . . . . . . 9 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → dom 𝑝𝑂)
5857sseld 3948 . . . . . . . 8 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → (𝑧 ∈ dom 𝑝𝑧𝑂))
5958adantrd 491 . . . . . . 7 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → ((𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) → 𝑧𝑂))
6059rexlimdva 3135 . . . . . 6 (((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) → (∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) → 𝑧𝑂))
6160abssdv 4034 . . . . 5 (((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) → {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ⊆ 𝑂)
6261adantl 481 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ⊆ 𝑂)
6343, 62eqsstrd 3984 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → dom 𝑇𝑂)
6441, 63pm2.61ian 811 . 2 (((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) → dom 𝑇𝑂)
655, 64eqsstrd 3984 1 (((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) → ( bday 𝑇) ⊆ 𝑂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wrex 3054  ∃!wreu 3354  ∃*wrmo 3355  cun 3915  wss 3917  ifcif 4491  {csn 4592  cop 4598   class class class wbr 5110  cmpt 5191  dom cdm 5641  cres 5643  cima 5644  Ord word 6334  Oncon0 6335  suc csuc 6337  cio 6465   Fn wfn 6509  ontowfo 6512  cfv 6514  crio 7346  1oc1o 8430   No csur 27558   <s cslt 27559   bday cbday 27560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-riota 7347  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562  df-bday 27563
This theorem is referenced by:  noetalem1  27660
  Copyright terms: Public domain W3C validator