MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfbday Structured version   Visualization version   GIF version

Theorem noinfbday 27684
Description: Birthday bounding law for surreal infimum. (Contributed by Scott Fenton, 8-Aug-2024.)
Hypothesis
Ref Expression
noinfbday.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbday (((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) → ( bday 𝑇) ⊆ 𝑂)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑔,𝑉
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑂(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfbday
Dummy variables 𝑝 𝑧 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noinfbday.1 . . . . 5 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21noinfno 27682 . . . 4 ((𝐵 No 𝐵𝑉) → 𝑇 No )
3 bdayval 27612 . . . 4 (𝑇 No → ( bday 𝑇) = dom 𝑇)
42, 3syl 17 . . 3 ((𝐵 No 𝐵𝑉) → ( bday 𝑇) = dom 𝑇)
54adantr 480 . 2 (((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) → ( bday 𝑇) = dom 𝑇)
6 iftrue 4506 . . . . . . . 8 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
71, 6eqtrid 2782 . . . . . . 7 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥𝑇 = ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
87dmeqd 5885 . . . . . 6 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = dom ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}))
9 1oex 8490 . . . . . . . . 9 1o ∈ V
109dmsnop 6205 . . . . . . . 8 dom {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩} = {dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)}
1110uneq2i 4140 . . . . . . 7 (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ dom {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) = (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)})
12 dmun 5890 . . . . . . 7 dom ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) = (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ dom {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩})
13 df-suc 6358 . . . . . . 7 suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)})
1411, 12, 133eqtr4i 2768 . . . . . 6 dom ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) = suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
158, 14eqtrdi 2786 . . . . 5 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
1615adantr 480 . . . 4 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → dom 𝑇 = suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
17 simprrl 780 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → 𝑂 ∈ On)
18 eloni 6362 . . . . . 6 (𝑂 ∈ On → Ord 𝑂)
1917, 18syl 17 . . . . 5 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → Ord 𝑂)
20 simprll 778 . . . . . . . 8 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → 𝐵 No )
21 simpl 482 . . . . . . . . . 10 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
22 nominmo 27663 . . . . . . . . . . 11 (𝐵 No → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2320, 22syl 17 . . . . . . . . . 10 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
24 reu5 3361 . . . . . . . . . 10 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ↔ (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
2521, 23, 24sylanbrc 583 . . . . . . . . 9 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
26 riotacl 7379 . . . . . . . . 9 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ 𝐵)
2725, 26syl 17 . . . . . . . 8 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ 𝐵)
2820, 27sseldd 3959 . . . . . . 7 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No )
29 bdayval 27612 . . . . . . 7 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ No → ( bday ‘(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) = dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
3028, 29syl 17 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → ( bday ‘(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) = dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥))
31 simprrr 781 . . . . . . 7 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → ( bday 𝐵) ⊆ 𝑂)
32 bdayfo 27641 . . . . . . . . 9 bday : No onto→On
33 fofn 6792 . . . . . . . . 9 ( bday : No onto→On → bday Fn No )
3432, 33ax-mp 5 . . . . . . . 8 bday Fn No
35 fnfvima 7225 . . . . . . . 8 (( bday Fn No 𝐵 No ∧ (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ 𝐵) → ( bday ‘(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) ∈ ( bday 𝐵))
3634, 20, 27, 35mp3an2i 1468 . . . . . . 7 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → ( bday ‘(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) ∈ ( bday 𝐵))
3731, 36sseldd 3959 . . . . . 6 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → ( bday ‘(𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)) ∈ 𝑂)
3830, 37eqeltrrd 2835 . . . . 5 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ 𝑂)
39 ordsucss 7812 . . . . 5 (Ord 𝑂 → (dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∈ 𝑂 → suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ⊆ 𝑂))
4019, 38, 39sylc 65 . . . 4 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → suc dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ⊆ 𝑂)
4116, 40eqsstrd 3993 . . 3 ((∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → dom 𝑇𝑂)
421noinfdm 27683 . . . . 5 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})
4342adantr 480 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → dom 𝑇 = {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})
44 simplrl 776 . . . . . . . . . . 11 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → 𝑂 ∈ On)
4544, 18syl 17 . . . . . . . . . 10 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → Ord 𝑂)
46 ssel2 3953 . . . . . . . . . . . . 13 ((𝐵 No 𝑝𝐵) → 𝑝 No )
4746ad4ant14 752 . . . . . . . . . . . 12 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → 𝑝 No )
48 bdayval 27612 . . . . . . . . . . . 12 (𝑝 No → ( bday 𝑝) = dom 𝑝)
4947, 48syl 17 . . . . . . . . . . 11 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → ( bday 𝑝) = dom 𝑝)
50 simplrr 777 . . . . . . . . . . . 12 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → ( bday 𝐵) ⊆ 𝑂)
51 fnfvima 7225 . . . . . . . . . . . . . 14 (( bday Fn No 𝐵 No 𝑝𝐵) → ( bday 𝑝) ∈ ( bday 𝐵))
5234, 51mp3an1 1450 . . . . . . . . . . . . 13 ((𝐵 No 𝑝𝐵) → ( bday 𝑝) ∈ ( bday 𝐵))
5352ad4ant14 752 . . . . . . . . . . . 12 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → ( bday 𝑝) ∈ ( bday 𝐵))
5450, 53sseldd 3959 . . . . . . . . . . 11 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → ( bday 𝑝) ∈ 𝑂)
5549, 54eqeltrrd 2835 . . . . . . . . . 10 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → dom 𝑝𝑂)
56 ordelss 6368 . . . . . . . . . 10 ((Ord 𝑂 ∧ dom 𝑝𝑂) → dom 𝑝𝑂)
5745, 55, 56syl2anc 584 . . . . . . . . 9 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → dom 𝑝𝑂)
5857sseld 3957 . . . . . . . 8 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → (𝑧 ∈ dom 𝑝𝑧𝑂))
5958adantrd 491 . . . . . . 7 ((((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) ∧ 𝑝𝐵) → ((𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) → 𝑧𝑂))
6059rexlimdva 3141 . . . . . 6 (((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) → (∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) → 𝑧𝑂))
6160abssdv 4043 . . . . 5 (((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) → {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ⊆ 𝑂)
6261adantl 481 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ⊆ 𝑂)
6343, 62eqsstrd 3993 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂))) → dom 𝑇𝑂)
6441, 63pm2.61ian 811 . 2 (((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) → dom 𝑇𝑂)
655, 64eqsstrd 3993 1 (((𝐵 No 𝐵𝑉) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) → ( bday 𝑇) ⊆ 𝑂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  {cab 2713  wral 3051  wrex 3060  ∃!wreu 3357  ∃*wrmo 3358  cun 3924  wss 3926  ifcif 4500  {csn 4601  cop 4607   class class class wbr 5119  cmpt 5201  dom cdm 5654  cres 5656  cima 5657  Ord word 6351  Oncon0 6352  suc csuc 6354  cio 6482   Fn wfn 6526  ontowfo 6529  cfv 6531  crio 7361  1oc1o 8473   No csur 27603   <s cslt 27604   bday cbday 27605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fo 6537  df-fv 6539  df-riota 7362  df-1o 8480  df-2o 8481  df-no 27606  df-slt 27607  df-bday 27608
This theorem is referenced by:  noetalem1  27705
  Copyright terms: Public domain W3C validator