Step | Hyp | Ref
| Expression |
1 | | funopdmsn.g |
. . . . 5
⊢ 𝐺 = 〈𝑋, 𝑌〉 |
2 | 1 | funeqi 6439 |
. . . 4
⊢ (Fun
𝐺 ↔ Fun 〈𝑋, 𝑌〉) |
3 | | funopdmsn.x |
. . . . . 6
⊢ 𝑋 ∈ 𝑉 |
4 | 3 | elexi 3441 |
. . . . 5
⊢ 𝑋 ∈ V |
5 | | funopdmsn.y |
. . . . . 6
⊢ 𝑌 ∈ 𝑊 |
6 | 5 | elexi 3441 |
. . . . 5
⊢ 𝑌 ∈ V |
7 | 4, 6 | funop 7003 |
. . . 4
⊢ (Fun
〈𝑋, 𝑌〉 ↔ ∃𝑥(𝑋 = {𝑥} ∧ 〈𝑋, 𝑌〉 = {〈𝑥, 𝑥〉})) |
8 | 2, 7 | bitri 274 |
. . 3
⊢ (Fun
𝐺 ↔ ∃𝑥(𝑋 = {𝑥} ∧ 〈𝑋, 𝑌〉 = {〈𝑥, 𝑥〉})) |
9 | 1 | eqcomi 2747 |
. . . . . . 7
⊢
〈𝑋, 𝑌〉 = 𝐺 |
10 | 9 | eqeq1i 2743 |
. . . . . 6
⊢
(〈𝑋, 𝑌〉 = {〈𝑥, 𝑥〉} ↔ 𝐺 = {〈𝑥, 𝑥〉}) |
11 | | dmeq 5801 |
. . . . . . . 8
⊢ (𝐺 = {〈𝑥, 𝑥〉} → dom 𝐺 = dom {〈𝑥, 𝑥〉}) |
12 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
13 | 12 | dmsnop 6108 |
. . . . . . . 8
⊢ dom
{〈𝑥, 𝑥〉} = {𝑥} |
14 | 11, 13 | eqtrdi 2795 |
. . . . . . 7
⊢ (𝐺 = {〈𝑥, 𝑥〉} → dom 𝐺 = {𝑥}) |
15 | | eleq2 2827 |
. . . . . . . . 9
⊢ (dom
𝐺 = {𝑥} → (𝐴 ∈ dom 𝐺 ↔ 𝐴 ∈ {𝑥})) |
16 | | eleq2 2827 |
. . . . . . . . 9
⊢ (dom
𝐺 = {𝑥} → (𝐵 ∈ dom 𝐺 ↔ 𝐵 ∈ {𝑥})) |
17 | 15, 16 | anbi12d 630 |
. . . . . . . 8
⊢ (dom
𝐺 = {𝑥} → ((𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) ↔ (𝐴 ∈ {𝑥} ∧ 𝐵 ∈ {𝑥}))) |
18 | | elsni 4575 |
. . . . . . . . 9
⊢ (𝐴 ∈ {𝑥} → 𝐴 = 𝑥) |
19 | | elsni 4575 |
. . . . . . . . 9
⊢ (𝐵 ∈ {𝑥} → 𝐵 = 𝑥) |
20 | | eqtr3 2764 |
. . . . . . . . 9
⊢ ((𝐴 = 𝑥 ∧ 𝐵 = 𝑥) → 𝐴 = 𝐵) |
21 | 18, 19, 20 | syl2an 595 |
. . . . . . . 8
⊢ ((𝐴 ∈ {𝑥} ∧ 𝐵 ∈ {𝑥}) → 𝐴 = 𝐵) |
22 | 17, 21 | syl6bi 252 |
. . . . . . 7
⊢ (dom
𝐺 = {𝑥} → ((𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵)) |
23 | 14, 22 | syl 17 |
. . . . . 6
⊢ (𝐺 = {〈𝑥, 𝑥〉} → ((𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵)) |
24 | 10, 23 | sylbi 216 |
. . . . 5
⊢
(〈𝑋, 𝑌〉 = {〈𝑥, 𝑥〉} → ((𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵)) |
25 | 24 | adantl 481 |
. . . 4
⊢ ((𝑋 = {𝑥} ∧ 〈𝑋, 𝑌〉 = {〈𝑥, 𝑥〉}) → ((𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵)) |
26 | 25 | exlimiv 1934 |
. . 3
⊢
(∃𝑥(𝑋 = {𝑥} ∧ 〈𝑋, 𝑌〉 = {〈𝑥, 𝑥〉}) → ((𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵)) |
27 | 8, 26 | sylbi 216 |
. 2
⊢ (Fun
𝐺 → ((𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵)) |
28 | 27 | 3impib 1114 |
1
⊢ ((Fun
𝐺 ∧ 𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵) |