| Step | Hyp | Ref
| Expression |
| 1 | | funopdmsn.g |
. . . . 5
⊢ 𝐺 = 〈𝑋, 𝑌〉 |
| 2 | 1 | funeqi 6568 |
. . . 4
⊢ (Fun
𝐺 ↔ Fun 〈𝑋, 𝑌〉) |
| 3 | | funopdmsn.x |
. . . . . 6
⊢ 𝑋 ∈ 𝑉 |
| 4 | 3 | elexi 3487 |
. . . . 5
⊢ 𝑋 ∈ V |
| 5 | | funopdmsn.y |
. . . . . 6
⊢ 𝑌 ∈ 𝑊 |
| 6 | 5 | elexi 3487 |
. . . . 5
⊢ 𝑌 ∈ V |
| 7 | 4, 6 | funop 7150 |
. . . 4
⊢ (Fun
〈𝑋, 𝑌〉 ↔ ∃𝑥(𝑋 = {𝑥} ∧ 〈𝑋, 𝑌〉 = {〈𝑥, 𝑥〉})) |
| 8 | 2, 7 | bitri 275 |
. . 3
⊢ (Fun
𝐺 ↔ ∃𝑥(𝑋 = {𝑥} ∧ 〈𝑋, 𝑌〉 = {〈𝑥, 𝑥〉})) |
| 9 | 1 | eqcomi 2743 |
. . . . . . 7
⊢
〈𝑋, 𝑌〉 = 𝐺 |
| 10 | 9 | eqeq1i 2739 |
. . . . . 6
⊢
(〈𝑋, 𝑌〉 = {〈𝑥, 𝑥〉} ↔ 𝐺 = {〈𝑥, 𝑥〉}) |
| 11 | | dmeq 5896 |
. . . . . . . 8
⊢ (𝐺 = {〈𝑥, 𝑥〉} → dom 𝐺 = dom {〈𝑥, 𝑥〉}) |
| 12 | | vex 3468 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 13 | 12 | dmsnop 6218 |
. . . . . . . 8
⊢ dom
{〈𝑥, 𝑥〉} = {𝑥} |
| 14 | 11, 13 | eqtrdi 2785 |
. . . . . . 7
⊢ (𝐺 = {〈𝑥, 𝑥〉} → dom 𝐺 = {𝑥}) |
| 15 | | eleq2 2822 |
. . . . . . . . 9
⊢ (dom
𝐺 = {𝑥} → (𝐴 ∈ dom 𝐺 ↔ 𝐴 ∈ {𝑥})) |
| 16 | | eleq2 2822 |
. . . . . . . . 9
⊢ (dom
𝐺 = {𝑥} → (𝐵 ∈ dom 𝐺 ↔ 𝐵 ∈ {𝑥})) |
| 17 | 15, 16 | anbi12d 632 |
. . . . . . . 8
⊢ (dom
𝐺 = {𝑥} → ((𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) ↔ (𝐴 ∈ {𝑥} ∧ 𝐵 ∈ {𝑥}))) |
| 18 | | elsni 4625 |
. . . . . . . . 9
⊢ (𝐴 ∈ {𝑥} → 𝐴 = 𝑥) |
| 19 | | elsni 4625 |
. . . . . . . . 9
⊢ (𝐵 ∈ {𝑥} → 𝐵 = 𝑥) |
| 20 | | eqtr3 2756 |
. . . . . . . . 9
⊢ ((𝐴 = 𝑥 ∧ 𝐵 = 𝑥) → 𝐴 = 𝐵) |
| 21 | 18, 19, 20 | syl2an 596 |
. . . . . . . 8
⊢ ((𝐴 ∈ {𝑥} ∧ 𝐵 ∈ {𝑥}) → 𝐴 = 𝐵) |
| 22 | 17, 21 | biimtrdi 253 |
. . . . . . 7
⊢ (dom
𝐺 = {𝑥} → ((𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵)) |
| 23 | 14, 22 | syl 17 |
. . . . . 6
⊢ (𝐺 = {〈𝑥, 𝑥〉} → ((𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵)) |
| 24 | 10, 23 | sylbi 217 |
. . . . 5
⊢
(〈𝑋, 𝑌〉 = {〈𝑥, 𝑥〉} → ((𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵)) |
| 25 | 24 | adantl 481 |
. . . 4
⊢ ((𝑋 = {𝑥} ∧ 〈𝑋, 𝑌〉 = {〈𝑥, 𝑥〉}) → ((𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵)) |
| 26 | 25 | exlimiv 1929 |
. . 3
⊢
(∃𝑥(𝑋 = {𝑥} ∧ 〈𝑋, 𝑌〉 = {〈𝑥, 𝑥〉}) → ((𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵)) |
| 27 | 8, 26 | sylbi 217 |
. 2
⊢ (Fun
𝐺 → ((𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵)) |
| 28 | 27 | 3impib 1116 |
1
⊢ ((Fun
𝐺 ∧ 𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵) |