MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funopdmsn Structured version   Visualization version   GIF version

Theorem funopdmsn 7022
Description: The domain of a function which is an ordered pair is a singleton. (Contributed by AV, 15-Nov-2021.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
funopdmsn.g 𝐺 = ⟨𝑋, 𝑌
funopdmsn.x 𝑋𝑉
funopdmsn.y 𝑌𝑊
Assertion
Ref Expression
funopdmsn ((Fun 𝐺𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵)

Proof of Theorem funopdmsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funopdmsn.g . . . . 5 𝐺 = ⟨𝑋, 𝑌
21funeqi 6455 . . . 4 (Fun 𝐺 ↔ Fun ⟨𝑋, 𝑌⟩)
3 funopdmsn.x . . . . . 6 𝑋𝑉
43elexi 3451 . . . . 5 𝑋 ∈ V
5 funopdmsn.y . . . . . 6 𝑌𝑊
65elexi 3451 . . . . 5 𝑌 ∈ V
74, 6funop 7021 . . . 4 (Fun ⟨𝑋, 𝑌⟩ ↔ ∃𝑥(𝑋 = {𝑥} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑥, 𝑥⟩}))
82, 7bitri 274 . . 3 (Fun 𝐺 ↔ ∃𝑥(𝑋 = {𝑥} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑥, 𝑥⟩}))
91eqcomi 2747 . . . . . . 7 𝑋, 𝑌⟩ = 𝐺
109eqeq1i 2743 . . . . . 6 (⟨𝑋, 𝑌⟩ = {⟨𝑥, 𝑥⟩} ↔ 𝐺 = {⟨𝑥, 𝑥⟩})
11 dmeq 5812 . . . . . . . 8 (𝐺 = {⟨𝑥, 𝑥⟩} → dom 𝐺 = dom {⟨𝑥, 𝑥⟩})
12 vex 3436 . . . . . . . . 9 𝑥 ∈ V
1312dmsnop 6119 . . . . . . . 8 dom {⟨𝑥, 𝑥⟩} = {𝑥}
1411, 13eqtrdi 2794 . . . . . . 7 (𝐺 = {⟨𝑥, 𝑥⟩} → dom 𝐺 = {𝑥})
15 eleq2 2827 . . . . . . . . 9 (dom 𝐺 = {𝑥} → (𝐴 ∈ dom 𝐺𝐴 ∈ {𝑥}))
16 eleq2 2827 . . . . . . . . 9 (dom 𝐺 = {𝑥} → (𝐵 ∈ dom 𝐺𝐵 ∈ {𝑥}))
1715, 16anbi12d 631 . . . . . . . 8 (dom 𝐺 = {𝑥} → ((𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) ↔ (𝐴 ∈ {𝑥} ∧ 𝐵 ∈ {𝑥})))
18 elsni 4578 . . . . . . . . 9 (𝐴 ∈ {𝑥} → 𝐴 = 𝑥)
19 elsni 4578 . . . . . . . . 9 (𝐵 ∈ {𝑥} → 𝐵 = 𝑥)
20 eqtr3 2764 . . . . . . . . 9 ((𝐴 = 𝑥𝐵 = 𝑥) → 𝐴 = 𝐵)
2118, 19, 20syl2an 596 . . . . . . . 8 ((𝐴 ∈ {𝑥} ∧ 𝐵 ∈ {𝑥}) → 𝐴 = 𝐵)
2217, 21syl6bi 252 . . . . . . 7 (dom 𝐺 = {𝑥} → ((𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵))
2314, 22syl 17 . . . . . 6 (𝐺 = {⟨𝑥, 𝑥⟩} → ((𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵))
2410, 23sylbi 216 . . . . 5 (⟨𝑋, 𝑌⟩ = {⟨𝑥, 𝑥⟩} → ((𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵))
2524adantl 482 . . . 4 ((𝑋 = {𝑥} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑥, 𝑥⟩}) → ((𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵))
2625exlimiv 1933 . . 3 (∃𝑥(𝑋 = {𝑥} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑥, 𝑥⟩}) → ((𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵))
278, 26sylbi 216 . 2 (Fun 𝐺 → ((𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵))
28273impib 1115 1 ((Fun 𝐺𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  {csn 4561  cop 4567  dom cdm 5589  Fun wfun 6427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441
This theorem is referenced by:  fundmge2nop0  14206
  Copyright terms: Public domain W3C validator