MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domfin4 Structured version   Visualization version   GIF version

Theorem domfin4 9586
Description: A set dominated by a Dedekind finite set is Dedekind finite. (Contributed by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
domfin4 ((𝐴 ∈ FinIV𝐵𝐴) → 𝐵 ∈ FinIV)

Proof of Theorem domfin4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 domeng 8378 . . 3 (𝐴 ∈ FinIV → (𝐵𝐴 ↔ ∃𝑥(𝐵𝑥𝑥𝐴)))
21biimpa 477 . 2 ((𝐴 ∈ FinIV𝐵𝐴) → ∃𝑥(𝐵𝑥𝑥𝐴))
3 ensym 8413 . . . 4 (𝐵𝑥𝑥𝐵)
43ad2antrl 724 . . 3 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝐵𝑥𝑥𝐴)) → 𝑥𝐵)
5 ssfin4 9585 . . . 4 ((𝐴 ∈ FinIV𝑥𝐴) → 𝑥 ∈ FinIV)
65ad2ant2rl 745 . . 3 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝐵𝑥𝑥𝐴)) → 𝑥 ∈ FinIV)
7 fin4en1 9584 . . 3 (𝑥𝐵 → (𝑥 ∈ FinIV𝐵 ∈ FinIV))
84, 6, 7sylc 65 . 2 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝐵𝑥𝑥𝐴)) → 𝐵 ∈ FinIV)
92, 8exlimddv 1917 1 ((𝐴 ∈ FinIV𝐵𝐴) → 𝐵 ∈ FinIV)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wex 1765  wcel 2083  wss 3865   class class class wbr 4968  cen 8361  cdom 8362  FinIVcfin4 9555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-er 8146  df-en 8365  df-dom 8366  df-fin4 9562
This theorem is referenced by:  infpssALT  9588
  Copyright terms: Public domain W3C validator