MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domfin4 Structured version   Visualization version   GIF version

Theorem domfin4 10202
Description: A set dominated by a Dedekind finite set is Dedekind finite. (Contributed by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
domfin4 ((𝐴 ∈ FinIV𝐵𝐴) → 𝐵 ∈ FinIV)

Proof of Theorem domfin4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 domeng 8885 . . 3 (𝐴 ∈ FinIV → (𝐵𝐴 ↔ ∃𝑥(𝐵𝑥𝑥𝐴)))
21biimpa 476 . 2 ((𝐴 ∈ FinIV𝐵𝐴) → ∃𝑥(𝐵𝑥𝑥𝐴))
3 ensym 8925 . . . 4 (𝐵𝑥𝑥𝐵)
43ad2antrl 728 . . 3 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝐵𝑥𝑥𝐴)) → 𝑥𝐵)
5 ssfin4 10201 . . . 4 ((𝐴 ∈ FinIV𝑥𝐴) → 𝑥 ∈ FinIV)
65ad2ant2rl 749 . . 3 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝐵𝑥𝑥𝐴)) → 𝑥 ∈ FinIV)
7 fin4en1 10200 . . 3 (𝑥𝐵 → (𝑥 ∈ FinIV𝐵 ∈ FinIV))
84, 6, 7sylc 65 . 2 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝐵𝑥𝑥𝐴)) → 𝐵 ∈ FinIV)
92, 8exlimddv 1936 1 ((𝐴 ∈ FinIV𝐵𝐴) → 𝐵 ∈ FinIV)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1780  wcel 2111  wss 3897   class class class wbr 5089  cen 8866  cdom 8867  FinIVcfin4 10171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-er 8622  df-en 8870  df-dom 8871  df-fin4 10178
This theorem is referenced by:  infpssALT  10204
  Copyright terms: Public domain W3C validator