![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domfin4 | Structured version Visualization version GIF version |
Description: A set dominated by a Dedekind finite set is Dedekind finite. (Contributed by Mario Carneiro, 16-May-2015.) |
Ref | Expression |
---|---|
domfin4 | ⊢ ((𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ FinIV) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domeng 8378 | . . 3 ⊢ (𝐴 ∈ FinIV → (𝐵 ≼ 𝐴 ↔ ∃𝑥(𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) | |
2 | 1 | biimpa 477 | . 2 ⊢ ((𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴) → ∃𝑥(𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) |
3 | ensym 8413 | . . . 4 ⊢ (𝐵 ≈ 𝑥 → 𝑥 ≈ 𝐵) | |
4 | 3 | ad2antrl 724 | . . 3 ⊢ (((𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴) ∧ (𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) → 𝑥 ≈ 𝐵) |
5 | ssfin4 9585 | . . . 4 ⊢ ((𝐴 ∈ FinIV ∧ 𝑥 ⊆ 𝐴) → 𝑥 ∈ FinIV) | |
6 | 5 | ad2ant2rl 745 | . . 3 ⊢ (((𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴) ∧ (𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) → 𝑥 ∈ FinIV) |
7 | fin4en1 9584 | . . 3 ⊢ (𝑥 ≈ 𝐵 → (𝑥 ∈ FinIV → 𝐵 ∈ FinIV)) | |
8 | 4, 6, 7 | sylc 65 | . 2 ⊢ (((𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴) ∧ (𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) → 𝐵 ∈ FinIV) |
9 | 2, 8 | exlimddv 1917 | 1 ⊢ ((𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ FinIV) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∃wex 1765 ∈ wcel 2083 ⊆ wss 3865 class class class wbr 4968 ≈ cen 8361 ≼ cdom 8362 FinIVcfin4 9555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-id 5355 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-er 8146 df-en 8365 df-dom 8366 df-fin4 9562 |
This theorem is referenced by: infpssALT 9588 |
Copyright terms: Public domain | W3C validator |