MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domfin4 Structured version   Visualization version   GIF version

Theorem domfin4 10349
Description: A set dominated by a Dedekind finite set is Dedekind finite. (Contributed by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
domfin4 ((𝐴 ∈ FinIV𝐵𝐴) → 𝐵 ∈ FinIV)

Proof of Theorem domfin4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 domeng 9002 . . 3 (𝐴 ∈ FinIV → (𝐵𝐴 ↔ ∃𝑥(𝐵𝑥𝑥𝐴)))
21biimpa 476 . 2 ((𝐴 ∈ FinIV𝐵𝐴) → ∃𝑥(𝐵𝑥𝑥𝐴))
3 ensym 9042 . . . 4 (𝐵𝑥𝑥𝐵)
43ad2antrl 728 . . 3 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝐵𝑥𝑥𝐴)) → 𝑥𝐵)
5 ssfin4 10348 . . . 4 ((𝐴 ∈ FinIV𝑥𝐴) → 𝑥 ∈ FinIV)
65ad2ant2rl 749 . . 3 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝐵𝑥𝑥𝐴)) → 𝑥 ∈ FinIV)
7 fin4en1 10347 . . 3 (𝑥𝐵 → (𝑥 ∈ FinIV𝐵 ∈ FinIV))
84, 6, 7sylc 65 . 2 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝐵𝑥𝑥𝐴)) → 𝐵 ∈ FinIV)
92, 8exlimddv 1933 1 ((𝐴 ∈ FinIV𝐵𝐴) → 𝐵 ∈ FinIV)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1776  wcel 2106  wss 3963   class class class wbr 5148  cen 8981  cdom 8982  FinIVcfin4 10318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-er 8744  df-en 8985  df-dom 8986  df-fin4 10325
This theorem is referenced by:  infpssALT  10351
  Copyright terms: Public domain W3C validator