Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > domfin4 | Structured version Visualization version GIF version |
Description: A set dominated by a Dedekind finite set is Dedekind finite. (Contributed by Mario Carneiro, 16-May-2015.) |
Ref | Expression |
---|---|
domfin4 | ⊢ ((𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ FinIV) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domeng 8723 | . . 3 ⊢ (𝐴 ∈ FinIV → (𝐵 ≼ 𝐴 ↔ ∃𝑥(𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) | |
2 | 1 | biimpa 476 | . 2 ⊢ ((𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴) → ∃𝑥(𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) |
3 | ensym 8760 | . . . 4 ⊢ (𝐵 ≈ 𝑥 → 𝑥 ≈ 𝐵) | |
4 | 3 | ad2antrl 724 | . . 3 ⊢ (((𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴) ∧ (𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) → 𝑥 ≈ 𝐵) |
5 | ssfin4 10050 | . . . 4 ⊢ ((𝐴 ∈ FinIV ∧ 𝑥 ⊆ 𝐴) → 𝑥 ∈ FinIV) | |
6 | 5 | ad2ant2rl 745 | . . 3 ⊢ (((𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴) ∧ (𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) → 𝑥 ∈ FinIV) |
7 | fin4en1 10049 | . . 3 ⊢ (𝑥 ≈ 𝐵 → (𝑥 ∈ FinIV → 𝐵 ∈ FinIV)) | |
8 | 4, 6, 7 | sylc 65 | . 2 ⊢ (((𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴) ∧ (𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) → 𝐵 ∈ FinIV) |
9 | 2, 8 | exlimddv 1941 | 1 ⊢ ((𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ FinIV) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1785 ∈ wcel 2109 ⊆ wss 3891 class class class wbr 5078 ≈ cen 8704 ≼ cdom 8705 FinIVcfin4 10020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-er 8472 df-en 8708 df-dom 8709 df-fin4 10027 |
This theorem is referenced by: infpssALT 10053 |
Copyright terms: Public domain | W3C validator |