MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unxpwdom Structured version   Visualization version   GIF version

Theorem unxpwdom 9658
Description: If a Cartesian product is dominated by a union, then the base set is either weakly dominated by one factor of the union or dominated by the other. Extracted from Lemma 2.3 of [KanamoriPincus] p. 420. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
unxpwdom ((𝐴 × 𝐴) ≼ (𝐵𝐶) → (𝐴* 𝐵𝐴𝐶))

Proof of Theorem unxpwdom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reldom 9009 . . . . 5 Rel ≼
21brrelex2i 5757 . . . 4 ((𝐴 × 𝐴) ≼ (𝐵𝐶) → (𝐵𝐶) ∈ V)
3 domeng 9022 . . . 4 ((𝐵𝐶) ∈ V → ((𝐴 × 𝐴) ≼ (𝐵𝐶) ↔ ∃𝑥((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))))
42, 3syl 17 . . 3 ((𝐴 × 𝐴) ≼ (𝐵𝐶) → ((𝐴 × 𝐴) ≼ (𝐵𝐶) ↔ ∃𝑥((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))))
54ibi 267 . 2 ((𝐴 × 𝐴) ≼ (𝐵𝐶) → ∃𝑥((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶)))
6 simprl 770 . . . . 5 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴 × 𝐴) ≈ 𝑥)
7 indi 4303 . . . . . 6 (𝑥 ∩ (𝐵𝐶)) = ((𝑥𝐵) ∪ (𝑥𝐶))
8 simprr 772 . . . . . . 7 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → 𝑥 ⊆ (𝐵𝐶))
9 dfss2 3994 . . . . . . 7 (𝑥 ⊆ (𝐵𝐶) ↔ (𝑥 ∩ (𝐵𝐶)) = 𝑥)
108, 9sylib 218 . . . . . 6 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝑥 ∩ (𝐵𝐶)) = 𝑥)
117, 10eqtr3id 2794 . . . . 5 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → ((𝑥𝐵) ∪ (𝑥𝐶)) = 𝑥)
126, 11breqtrrd 5194 . . . 4 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴 × 𝐴) ≈ ((𝑥𝐵) ∪ (𝑥𝐶)))
13 unxpwdom2 9657 . . . 4 ((𝐴 × 𝐴) ≈ ((𝑥𝐵) ∪ (𝑥𝐶)) → (𝐴* (𝑥𝐵) ∨ 𝐴 ≼ (𝑥𝐶)))
1412, 13syl 17 . . 3 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴* (𝑥𝐵) ∨ 𝐴 ≼ (𝑥𝐶)))
15 ssun1 4201 . . . . . . . 8 𝐵 ⊆ (𝐵𝐶)
162adantr 480 . . . . . . . 8 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐵𝐶) ∈ V)
17 ssexg 5341 . . . . . . . 8 ((𝐵 ⊆ (𝐵𝐶) ∧ (𝐵𝐶) ∈ V) → 𝐵 ∈ V)
1815, 16, 17sylancr 586 . . . . . . 7 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → 𝐵 ∈ V)
19 inss2 4259 . . . . . . 7 (𝑥𝐵) ⊆ 𝐵
20 ssdomg 9060 . . . . . . 7 (𝐵 ∈ V → ((𝑥𝐵) ⊆ 𝐵 → (𝑥𝐵) ≼ 𝐵))
2118, 19, 20mpisyl 21 . . . . . 6 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝑥𝐵) ≼ 𝐵)
22 domwdom 9643 . . . . . 6 ((𝑥𝐵) ≼ 𝐵 → (𝑥𝐵) ≼* 𝐵)
2321, 22syl 17 . . . . 5 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝑥𝐵) ≼* 𝐵)
24 wdomtr 9644 . . . . . 6 ((𝐴* (𝑥𝐵) ∧ (𝑥𝐵) ≼* 𝐵) → 𝐴* 𝐵)
2524expcom 413 . . . . 5 ((𝑥𝐵) ≼* 𝐵 → (𝐴* (𝑥𝐵) → 𝐴* 𝐵))
2623, 25syl 17 . . . 4 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴* (𝑥𝐵) → 𝐴* 𝐵))
27 ssun2 4202 . . . . . . 7 𝐶 ⊆ (𝐵𝐶)
28 ssexg 5341 . . . . . . 7 ((𝐶 ⊆ (𝐵𝐶) ∧ (𝐵𝐶) ∈ V) → 𝐶 ∈ V)
2927, 16, 28sylancr 586 . . . . . 6 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → 𝐶 ∈ V)
30 inss2 4259 . . . . . 6 (𝑥𝐶) ⊆ 𝐶
31 ssdomg 9060 . . . . . 6 (𝐶 ∈ V → ((𝑥𝐶) ⊆ 𝐶 → (𝑥𝐶) ≼ 𝐶))
3229, 30, 31mpisyl 21 . . . . 5 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝑥𝐶) ≼ 𝐶)
33 domtr 9067 . . . . . 6 ((𝐴 ≼ (𝑥𝐶) ∧ (𝑥𝐶) ≼ 𝐶) → 𝐴𝐶)
3433expcom 413 . . . . 5 ((𝑥𝐶) ≼ 𝐶 → (𝐴 ≼ (𝑥𝐶) → 𝐴𝐶))
3532, 34syl 17 . . . 4 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴 ≼ (𝑥𝐶) → 𝐴𝐶))
3626, 35orim12d 965 . . 3 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → ((𝐴* (𝑥𝐵) ∨ 𝐴 ≼ (𝑥𝐶)) → (𝐴* 𝐵𝐴𝐶)))
3714, 36mpd 15 . 2 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴* 𝐵𝐴𝐶))
385, 37exlimddv 1934 1 ((𝐴 × 𝐴) ≼ (𝐵𝐶) → (𝐴* 𝐵𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  cun 3974  cin 3975  wss 3976   class class class wbr 5166   × cxp 5698  cen 9000  cdom 9001  * cwdom 9633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-wdom 9634
This theorem is referenced by:  pwdjudom  10284
  Copyright terms: Public domain W3C validator