Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  unxpwdom Structured version   Visualization version   GIF version

Theorem unxpwdom 9055
 Description: If a Cartesian product is dominated by a union, then the base set is either weakly dominated by one factor of the union or dominated by the other. Extracted from Lemma 2.3 of [KanamoriPincus] p. 420. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
unxpwdom ((𝐴 × 𝐴) ≼ (𝐵𝐶) → (𝐴* 𝐵𝐴𝐶))

Proof of Theorem unxpwdom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reldom 8516 . . . . 5 Rel ≼
21brrelex2i 5577 . . . 4 ((𝐴 × 𝐴) ≼ (𝐵𝐶) → (𝐵𝐶) ∈ V)
3 domeng 8524 . . . 4 ((𝐵𝐶) ∈ V → ((𝐴 × 𝐴) ≼ (𝐵𝐶) ↔ ∃𝑥((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))))
42, 3syl 17 . . 3 ((𝐴 × 𝐴) ≼ (𝐵𝐶) → ((𝐴 × 𝐴) ≼ (𝐵𝐶) ↔ ∃𝑥((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))))
54ibi 270 . 2 ((𝐴 × 𝐴) ≼ (𝐵𝐶) → ∃𝑥((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶)))
6 simprl 770 . . . . 5 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴 × 𝐴) ≈ 𝑥)
7 indi 4203 . . . . . 6 (𝑥 ∩ (𝐵𝐶)) = ((𝑥𝐵) ∪ (𝑥𝐶))
8 simprr 772 . . . . . . 7 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → 𝑥 ⊆ (𝐵𝐶))
9 df-ss 3900 . . . . . . 7 (𝑥 ⊆ (𝐵𝐶) ↔ (𝑥 ∩ (𝐵𝐶)) = 𝑥)
108, 9sylib 221 . . . . . 6 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝑥 ∩ (𝐵𝐶)) = 𝑥)
117, 10syl5eqr 2847 . . . . 5 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → ((𝑥𝐵) ∪ (𝑥𝐶)) = 𝑥)
126, 11breqtrrd 5062 . . . 4 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴 × 𝐴) ≈ ((𝑥𝐵) ∪ (𝑥𝐶)))
13 unxpwdom2 9054 . . . 4 ((𝐴 × 𝐴) ≈ ((𝑥𝐵) ∪ (𝑥𝐶)) → (𝐴* (𝑥𝐵) ∨ 𝐴 ≼ (𝑥𝐶)))
1412, 13syl 17 . . 3 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴* (𝑥𝐵) ∨ 𝐴 ≼ (𝑥𝐶)))
15 ssun1 4102 . . . . . . . 8 𝐵 ⊆ (𝐵𝐶)
162adantr 484 . . . . . . . 8 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐵𝐶) ∈ V)
17 ssexg 5195 . . . . . . . 8 ((𝐵 ⊆ (𝐵𝐶) ∧ (𝐵𝐶) ∈ V) → 𝐵 ∈ V)
1815, 16, 17sylancr 590 . . . . . . 7 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → 𝐵 ∈ V)
19 inss2 4159 . . . . . . 7 (𝑥𝐵) ⊆ 𝐵
20 ssdomg 8556 . . . . . . 7 (𝐵 ∈ V → ((𝑥𝐵) ⊆ 𝐵 → (𝑥𝐵) ≼ 𝐵))
2118, 19, 20mpisyl 21 . . . . . 6 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝑥𝐵) ≼ 𝐵)
22 domwdom 9040 . . . . . 6 ((𝑥𝐵) ≼ 𝐵 → (𝑥𝐵) ≼* 𝐵)
2321, 22syl 17 . . . . 5 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝑥𝐵) ≼* 𝐵)
24 wdomtr 9041 . . . . . 6 ((𝐴* (𝑥𝐵) ∧ (𝑥𝐵) ≼* 𝐵) → 𝐴* 𝐵)
2524expcom 417 . . . . 5 ((𝑥𝐵) ≼* 𝐵 → (𝐴* (𝑥𝐵) → 𝐴* 𝐵))
2623, 25syl 17 . . . 4 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴* (𝑥𝐵) → 𝐴* 𝐵))
27 ssun2 4103 . . . . . . 7 𝐶 ⊆ (𝐵𝐶)
28 ssexg 5195 . . . . . . 7 ((𝐶 ⊆ (𝐵𝐶) ∧ (𝐵𝐶) ∈ V) → 𝐶 ∈ V)
2927, 16, 28sylancr 590 . . . . . 6 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → 𝐶 ∈ V)
30 inss2 4159 . . . . . 6 (𝑥𝐶) ⊆ 𝐶
31 ssdomg 8556 . . . . . 6 (𝐶 ∈ V → ((𝑥𝐶) ⊆ 𝐶 → (𝑥𝐶) ≼ 𝐶))
3229, 30, 31mpisyl 21 . . . . 5 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝑥𝐶) ≼ 𝐶)
33 domtr 8563 . . . . . 6 ((𝐴 ≼ (𝑥𝐶) ∧ (𝑥𝐶) ≼ 𝐶) → 𝐴𝐶)
3433expcom 417 . . . . 5 ((𝑥𝐶) ≼ 𝐶 → (𝐴 ≼ (𝑥𝐶) → 𝐴𝐶))
3532, 34syl 17 . . . 4 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴 ≼ (𝑥𝐶) → 𝐴𝐶))
3626, 35orim12d 962 . . 3 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → ((𝐴* (𝑥𝐵) ∨ 𝐴 ≼ (𝑥𝐶)) → (𝐴* 𝐵𝐴𝐶)))
3714, 36mpd 15 . 2 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴* 𝐵𝐴𝐶))
385, 37exlimddv 1936 1 ((𝐴 × 𝐴) ≼ (𝐵𝐶) → (𝐴* 𝐵𝐴𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538  ∃wex 1781   ∈ wcel 2111  Vcvv 3442   ∪ cun 3881   ∩ cin 3882   ⊆ wss 3883   class class class wbr 5034   × cxp 5521   ≈ cen 8507   ≼ cdom 8508   ≼* cwdom 9030 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-id 5429  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-1st 7684  df-2nd 7685  df-er 8290  df-en 8511  df-dom 8512  df-sdom 8513  df-wdom 9031 This theorem is referenced by:  pwdjudom  9645
 Copyright terms: Public domain W3C validator