| Step | Hyp | Ref
| Expression |
| 1 | | reldom 8991 |
. . . . 5
⊢ Rel
≼ |
| 2 | 1 | brrelex2i 5742 |
. . . 4
⊢ ((𝐴 × 𝐴) ≼ (𝐵 ∪ 𝐶) → (𝐵 ∪ 𝐶) ∈ V) |
| 3 | | domeng 9003 |
. . . 4
⊢ ((𝐵 ∪ 𝐶) ∈ V → ((𝐴 × 𝐴) ≼ (𝐵 ∪ 𝐶) ↔ ∃𝑥((𝐴 × 𝐴) ≈ 𝑥 ∧ 𝑥 ⊆ (𝐵 ∪ 𝐶)))) |
| 4 | 2, 3 | syl 17 |
. . 3
⊢ ((𝐴 × 𝐴) ≼ (𝐵 ∪ 𝐶) → ((𝐴 × 𝐴) ≼ (𝐵 ∪ 𝐶) ↔ ∃𝑥((𝐴 × 𝐴) ≈ 𝑥 ∧ 𝑥 ⊆ (𝐵 ∪ 𝐶)))) |
| 5 | 4 | ibi 267 |
. 2
⊢ ((𝐴 × 𝐴) ≼ (𝐵 ∪ 𝐶) → ∃𝑥((𝐴 × 𝐴) ≈ 𝑥 ∧ 𝑥 ⊆ (𝐵 ∪ 𝐶))) |
| 6 | | simprl 771 |
. . . . 5
⊢ (((𝐴 × 𝐴) ≼ (𝐵 ∪ 𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥 ∧ 𝑥 ⊆ (𝐵 ∪ 𝐶))) → (𝐴 × 𝐴) ≈ 𝑥) |
| 7 | | indi 4284 |
. . . . . 6
⊢ (𝑥 ∩ (𝐵 ∪ 𝐶)) = ((𝑥 ∩ 𝐵) ∪ (𝑥 ∩ 𝐶)) |
| 8 | | simprr 773 |
. . . . . . 7
⊢ (((𝐴 × 𝐴) ≼ (𝐵 ∪ 𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥 ∧ 𝑥 ⊆ (𝐵 ∪ 𝐶))) → 𝑥 ⊆ (𝐵 ∪ 𝐶)) |
| 9 | | dfss2 3969 |
. . . . . . 7
⊢ (𝑥 ⊆ (𝐵 ∪ 𝐶) ↔ (𝑥 ∩ (𝐵 ∪ 𝐶)) = 𝑥) |
| 10 | 8, 9 | sylib 218 |
. . . . . 6
⊢ (((𝐴 × 𝐴) ≼ (𝐵 ∪ 𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥 ∧ 𝑥 ⊆ (𝐵 ∪ 𝐶))) → (𝑥 ∩ (𝐵 ∪ 𝐶)) = 𝑥) |
| 11 | 7, 10 | eqtr3id 2791 |
. . . . 5
⊢ (((𝐴 × 𝐴) ≼ (𝐵 ∪ 𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥 ∧ 𝑥 ⊆ (𝐵 ∪ 𝐶))) → ((𝑥 ∩ 𝐵) ∪ (𝑥 ∩ 𝐶)) = 𝑥) |
| 12 | 6, 11 | breqtrrd 5171 |
. . . 4
⊢ (((𝐴 × 𝐴) ≼ (𝐵 ∪ 𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥 ∧ 𝑥 ⊆ (𝐵 ∪ 𝐶))) → (𝐴 × 𝐴) ≈ ((𝑥 ∩ 𝐵) ∪ (𝑥 ∩ 𝐶))) |
| 13 | | unxpwdom2 9628 |
. . . 4
⊢ ((𝐴 × 𝐴) ≈ ((𝑥 ∩ 𝐵) ∪ (𝑥 ∩ 𝐶)) → (𝐴 ≼* (𝑥 ∩ 𝐵) ∨ 𝐴 ≼ (𝑥 ∩ 𝐶))) |
| 14 | 12, 13 | syl 17 |
. . 3
⊢ (((𝐴 × 𝐴) ≼ (𝐵 ∪ 𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥 ∧ 𝑥 ⊆ (𝐵 ∪ 𝐶))) → (𝐴 ≼* (𝑥 ∩ 𝐵) ∨ 𝐴 ≼ (𝑥 ∩ 𝐶))) |
| 15 | | ssun1 4178 |
. . . . . . . 8
⊢ 𝐵 ⊆ (𝐵 ∪ 𝐶) |
| 16 | 2 | adantr 480 |
. . . . . . . 8
⊢ (((𝐴 × 𝐴) ≼ (𝐵 ∪ 𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥 ∧ 𝑥 ⊆ (𝐵 ∪ 𝐶))) → (𝐵 ∪ 𝐶) ∈ V) |
| 17 | | ssexg 5323 |
. . . . . . . 8
⊢ ((𝐵 ⊆ (𝐵 ∪ 𝐶) ∧ (𝐵 ∪ 𝐶) ∈ V) → 𝐵 ∈ V) |
| 18 | 15, 16, 17 | sylancr 587 |
. . . . . . 7
⊢ (((𝐴 × 𝐴) ≼ (𝐵 ∪ 𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥 ∧ 𝑥 ⊆ (𝐵 ∪ 𝐶))) → 𝐵 ∈ V) |
| 19 | | inss2 4238 |
. . . . . . 7
⊢ (𝑥 ∩ 𝐵) ⊆ 𝐵 |
| 20 | | ssdomg 9040 |
. . . . . . 7
⊢ (𝐵 ∈ V → ((𝑥 ∩ 𝐵) ⊆ 𝐵 → (𝑥 ∩ 𝐵) ≼ 𝐵)) |
| 21 | 18, 19, 20 | mpisyl 21 |
. . . . . 6
⊢ (((𝐴 × 𝐴) ≼ (𝐵 ∪ 𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥 ∧ 𝑥 ⊆ (𝐵 ∪ 𝐶))) → (𝑥 ∩ 𝐵) ≼ 𝐵) |
| 22 | | domwdom 9614 |
. . . . . 6
⊢ ((𝑥 ∩ 𝐵) ≼ 𝐵 → (𝑥 ∩ 𝐵) ≼* 𝐵) |
| 23 | 21, 22 | syl 17 |
. . . . 5
⊢ (((𝐴 × 𝐴) ≼ (𝐵 ∪ 𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥 ∧ 𝑥 ⊆ (𝐵 ∪ 𝐶))) → (𝑥 ∩ 𝐵) ≼* 𝐵) |
| 24 | | wdomtr 9615 |
. . . . . 6
⊢ ((𝐴 ≼* (𝑥 ∩ 𝐵) ∧ (𝑥 ∩ 𝐵) ≼* 𝐵) → 𝐴 ≼* 𝐵) |
| 25 | 24 | expcom 413 |
. . . . 5
⊢ ((𝑥 ∩ 𝐵) ≼* 𝐵 → (𝐴 ≼* (𝑥 ∩ 𝐵) → 𝐴 ≼* 𝐵)) |
| 26 | 23, 25 | syl 17 |
. . . 4
⊢ (((𝐴 × 𝐴) ≼ (𝐵 ∪ 𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥 ∧ 𝑥 ⊆ (𝐵 ∪ 𝐶))) → (𝐴 ≼* (𝑥 ∩ 𝐵) → 𝐴 ≼* 𝐵)) |
| 27 | | ssun2 4179 |
. . . . . . 7
⊢ 𝐶 ⊆ (𝐵 ∪ 𝐶) |
| 28 | | ssexg 5323 |
. . . . . . 7
⊢ ((𝐶 ⊆ (𝐵 ∪ 𝐶) ∧ (𝐵 ∪ 𝐶) ∈ V) → 𝐶 ∈ V) |
| 29 | 27, 16, 28 | sylancr 587 |
. . . . . 6
⊢ (((𝐴 × 𝐴) ≼ (𝐵 ∪ 𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥 ∧ 𝑥 ⊆ (𝐵 ∪ 𝐶))) → 𝐶 ∈ V) |
| 30 | | inss2 4238 |
. . . . . 6
⊢ (𝑥 ∩ 𝐶) ⊆ 𝐶 |
| 31 | | ssdomg 9040 |
. . . . . 6
⊢ (𝐶 ∈ V → ((𝑥 ∩ 𝐶) ⊆ 𝐶 → (𝑥 ∩ 𝐶) ≼ 𝐶)) |
| 32 | 29, 30, 31 | mpisyl 21 |
. . . . 5
⊢ (((𝐴 × 𝐴) ≼ (𝐵 ∪ 𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥 ∧ 𝑥 ⊆ (𝐵 ∪ 𝐶))) → (𝑥 ∩ 𝐶) ≼ 𝐶) |
| 33 | | domtr 9047 |
. . . . . 6
⊢ ((𝐴 ≼ (𝑥 ∩ 𝐶) ∧ (𝑥 ∩ 𝐶) ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| 34 | 33 | expcom 413 |
. . . . 5
⊢ ((𝑥 ∩ 𝐶) ≼ 𝐶 → (𝐴 ≼ (𝑥 ∩ 𝐶) → 𝐴 ≼ 𝐶)) |
| 35 | 32, 34 | syl 17 |
. . . 4
⊢ (((𝐴 × 𝐴) ≼ (𝐵 ∪ 𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥 ∧ 𝑥 ⊆ (𝐵 ∪ 𝐶))) → (𝐴 ≼ (𝑥 ∩ 𝐶) → 𝐴 ≼ 𝐶)) |
| 36 | 26, 35 | orim12d 967 |
. . 3
⊢ (((𝐴 × 𝐴) ≼ (𝐵 ∪ 𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥 ∧ 𝑥 ⊆ (𝐵 ∪ 𝐶))) → ((𝐴 ≼* (𝑥 ∩ 𝐵) ∨ 𝐴 ≼ (𝑥 ∩ 𝐶)) → (𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶))) |
| 37 | 14, 36 | mpd 15 |
. 2
⊢ (((𝐴 × 𝐴) ≼ (𝐵 ∪ 𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥 ∧ 𝑥 ⊆ (𝐵 ∪ 𝐶))) → (𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶)) |
| 38 | 5, 37 | exlimddv 1935 |
1
⊢ ((𝐴 × 𝐴) ≼ (𝐵 ∪ 𝐶) → (𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶)) |