MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unxpwdom Structured version   Visualization version   GIF version

Theorem unxpwdom 9348
Description: If a Cartesian product is dominated by a union, then the base set is either weakly dominated by one factor of the union or dominated by the other. Extracted from Lemma 2.3 of [KanamoriPincus] p. 420. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
unxpwdom ((𝐴 × 𝐴) ≼ (𝐵𝐶) → (𝐴* 𝐵𝐴𝐶))

Proof of Theorem unxpwdom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reldom 8739 . . . . 5 Rel ≼
21brrelex2i 5644 . . . 4 ((𝐴 × 𝐴) ≼ (𝐵𝐶) → (𝐵𝐶) ∈ V)
3 domeng 8752 . . . 4 ((𝐵𝐶) ∈ V → ((𝐴 × 𝐴) ≼ (𝐵𝐶) ↔ ∃𝑥((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))))
42, 3syl 17 . . 3 ((𝐴 × 𝐴) ≼ (𝐵𝐶) → ((𝐴 × 𝐴) ≼ (𝐵𝐶) ↔ ∃𝑥((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))))
54ibi 266 . 2 ((𝐴 × 𝐴) ≼ (𝐵𝐶) → ∃𝑥((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶)))
6 simprl 768 . . . . 5 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴 × 𝐴) ≈ 𝑥)
7 indi 4207 . . . . . 6 (𝑥 ∩ (𝐵𝐶)) = ((𝑥𝐵) ∪ (𝑥𝐶))
8 simprr 770 . . . . . . 7 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → 𝑥 ⊆ (𝐵𝐶))
9 df-ss 3904 . . . . . . 7 (𝑥 ⊆ (𝐵𝐶) ↔ (𝑥 ∩ (𝐵𝐶)) = 𝑥)
108, 9sylib 217 . . . . . 6 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝑥 ∩ (𝐵𝐶)) = 𝑥)
117, 10eqtr3id 2792 . . . . 5 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → ((𝑥𝐵) ∪ (𝑥𝐶)) = 𝑥)
126, 11breqtrrd 5102 . . . 4 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴 × 𝐴) ≈ ((𝑥𝐵) ∪ (𝑥𝐶)))
13 unxpwdom2 9347 . . . 4 ((𝐴 × 𝐴) ≈ ((𝑥𝐵) ∪ (𝑥𝐶)) → (𝐴* (𝑥𝐵) ∨ 𝐴 ≼ (𝑥𝐶)))
1412, 13syl 17 . . 3 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴* (𝑥𝐵) ∨ 𝐴 ≼ (𝑥𝐶)))
15 ssun1 4106 . . . . . . . 8 𝐵 ⊆ (𝐵𝐶)
162adantr 481 . . . . . . . 8 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐵𝐶) ∈ V)
17 ssexg 5247 . . . . . . . 8 ((𝐵 ⊆ (𝐵𝐶) ∧ (𝐵𝐶) ∈ V) → 𝐵 ∈ V)
1815, 16, 17sylancr 587 . . . . . . 7 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → 𝐵 ∈ V)
19 inss2 4163 . . . . . . 7 (𝑥𝐵) ⊆ 𝐵
20 ssdomg 8786 . . . . . . 7 (𝐵 ∈ V → ((𝑥𝐵) ⊆ 𝐵 → (𝑥𝐵) ≼ 𝐵))
2118, 19, 20mpisyl 21 . . . . . 6 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝑥𝐵) ≼ 𝐵)
22 domwdom 9333 . . . . . 6 ((𝑥𝐵) ≼ 𝐵 → (𝑥𝐵) ≼* 𝐵)
2321, 22syl 17 . . . . 5 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝑥𝐵) ≼* 𝐵)
24 wdomtr 9334 . . . . . 6 ((𝐴* (𝑥𝐵) ∧ (𝑥𝐵) ≼* 𝐵) → 𝐴* 𝐵)
2524expcom 414 . . . . 5 ((𝑥𝐵) ≼* 𝐵 → (𝐴* (𝑥𝐵) → 𝐴* 𝐵))
2623, 25syl 17 . . . 4 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴* (𝑥𝐵) → 𝐴* 𝐵))
27 ssun2 4107 . . . . . . 7 𝐶 ⊆ (𝐵𝐶)
28 ssexg 5247 . . . . . . 7 ((𝐶 ⊆ (𝐵𝐶) ∧ (𝐵𝐶) ∈ V) → 𝐶 ∈ V)
2927, 16, 28sylancr 587 . . . . . 6 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → 𝐶 ∈ V)
30 inss2 4163 . . . . . 6 (𝑥𝐶) ⊆ 𝐶
31 ssdomg 8786 . . . . . 6 (𝐶 ∈ V → ((𝑥𝐶) ⊆ 𝐶 → (𝑥𝐶) ≼ 𝐶))
3229, 30, 31mpisyl 21 . . . . 5 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝑥𝐶) ≼ 𝐶)
33 domtr 8793 . . . . . 6 ((𝐴 ≼ (𝑥𝐶) ∧ (𝑥𝐶) ≼ 𝐶) → 𝐴𝐶)
3433expcom 414 . . . . 5 ((𝑥𝐶) ≼ 𝐶 → (𝐴 ≼ (𝑥𝐶) → 𝐴𝐶))
3532, 34syl 17 . . . 4 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴 ≼ (𝑥𝐶) → 𝐴𝐶))
3626, 35orim12d 962 . . 3 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → ((𝐴* (𝑥𝐵) ∨ 𝐴 ≼ (𝑥𝐶)) → (𝐴* 𝐵𝐴𝐶)))
3714, 36mpd 15 . 2 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴* 𝐵𝐴𝐶))
385, 37exlimddv 1938 1 ((𝐴 × 𝐴) ≼ (𝐵𝐶) → (𝐴* 𝐵𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wex 1782  wcel 2106  Vcvv 3432  cun 3885  cin 3886  wss 3887   class class class wbr 5074   × cxp 5587  cen 8730  cdom 8731  * cwdom 9323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-wdom 9324
This theorem is referenced by:  pwdjudom  9972
  Copyright terms: Public domain W3C validator