MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unxpwdom Structured version   Visualization version   GIF version

Theorem unxpwdom 9627
Description: If a Cartesian product is dominated by a union, then the base set is either weakly dominated by one factor of the union or dominated by the other. Extracted from Lemma 2.3 of [KanamoriPincus] p. 420. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
unxpwdom ((𝐴 × 𝐴) ≼ (𝐵𝐶) → (𝐴* 𝐵𝐴𝐶))

Proof of Theorem unxpwdom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reldom 8990 . . . . 5 Rel ≼
21brrelex2i 5746 . . . 4 ((𝐴 × 𝐴) ≼ (𝐵𝐶) → (𝐵𝐶) ∈ V)
3 domeng 9002 . . . 4 ((𝐵𝐶) ∈ V → ((𝐴 × 𝐴) ≼ (𝐵𝐶) ↔ ∃𝑥((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))))
42, 3syl 17 . . 3 ((𝐴 × 𝐴) ≼ (𝐵𝐶) → ((𝐴 × 𝐴) ≼ (𝐵𝐶) ↔ ∃𝑥((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))))
54ibi 267 . 2 ((𝐴 × 𝐴) ≼ (𝐵𝐶) → ∃𝑥((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶)))
6 simprl 771 . . . . 5 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴 × 𝐴) ≈ 𝑥)
7 indi 4290 . . . . . 6 (𝑥 ∩ (𝐵𝐶)) = ((𝑥𝐵) ∪ (𝑥𝐶))
8 simprr 773 . . . . . . 7 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → 𝑥 ⊆ (𝐵𝐶))
9 dfss2 3981 . . . . . . 7 (𝑥 ⊆ (𝐵𝐶) ↔ (𝑥 ∩ (𝐵𝐶)) = 𝑥)
108, 9sylib 218 . . . . . 6 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝑥 ∩ (𝐵𝐶)) = 𝑥)
117, 10eqtr3id 2789 . . . . 5 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → ((𝑥𝐵) ∪ (𝑥𝐶)) = 𝑥)
126, 11breqtrrd 5176 . . . 4 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴 × 𝐴) ≈ ((𝑥𝐵) ∪ (𝑥𝐶)))
13 unxpwdom2 9626 . . . 4 ((𝐴 × 𝐴) ≈ ((𝑥𝐵) ∪ (𝑥𝐶)) → (𝐴* (𝑥𝐵) ∨ 𝐴 ≼ (𝑥𝐶)))
1412, 13syl 17 . . 3 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴* (𝑥𝐵) ∨ 𝐴 ≼ (𝑥𝐶)))
15 ssun1 4188 . . . . . . . 8 𝐵 ⊆ (𝐵𝐶)
162adantr 480 . . . . . . . 8 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐵𝐶) ∈ V)
17 ssexg 5329 . . . . . . . 8 ((𝐵 ⊆ (𝐵𝐶) ∧ (𝐵𝐶) ∈ V) → 𝐵 ∈ V)
1815, 16, 17sylancr 587 . . . . . . 7 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → 𝐵 ∈ V)
19 inss2 4246 . . . . . . 7 (𝑥𝐵) ⊆ 𝐵
20 ssdomg 9039 . . . . . . 7 (𝐵 ∈ V → ((𝑥𝐵) ⊆ 𝐵 → (𝑥𝐵) ≼ 𝐵))
2118, 19, 20mpisyl 21 . . . . . 6 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝑥𝐵) ≼ 𝐵)
22 domwdom 9612 . . . . . 6 ((𝑥𝐵) ≼ 𝐵 → (𝑥𝐵) ≼* 𝐵)
2321, 22syl 17 . . . . 5 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝑥𝐵) ≼* 𝐵)
24 wdomtr 9613 . . . . . 6 ((𝐴* (𝑥𝐵) ∧ (𝑥𝐵) ≼* 𝐵) → 𝐴* 𝐵)
2524expcom 413 . . . . 5 ((𝑥𝐵) ≼* 𝐵 → (𝐴* (𝑥𝐵) → 𝐴* 𝐵))
2623, 25syl 17 . . . 4 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴* (𝑥𝐵) → 𝐴* 𝐵))
27 ssun2 4189 . . . . . . 7 𝐶 ⊆ (𝐵𝐶)
28 ssexg 5329 . . . . . . 7 ((𝐶 ⊆ (𝐵𝐶) ∧ (𝐵𝐶) ∈ V) → 𝐶 ∈ V)
2927, 16, 28sylancr 587 . . . . . 6 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → 𝐶 ∈ V)
30 inss2 4246 . . . . . 6 (𝑥𝐶) ⊆ 𝐶
31 ssdomg 9039 . . . . . 6 (𝐶 ∈ V → ((𝑥𝐶) ⊆ 𝐶 → (𝑥𝐶) ≼ 𝐶))
3229, 30, 31mpisyl 21 . . . . 5 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝑥𝐶) ≼ 𝐶)
33 domtr 9046 . . . . . 6 ((𝐴 ≼ (𝑥𝐶) ∧ (𝑥𝐶) ≼ 𝐶) → 𝐴𝐶)
3433expcom 413 . . . . 5 ((𝑥𝐶) ≼ 𝐶 → (𝐴 ≼ (𝑥𝐶) → 𝐴𝐶))
3532, 34syl 17 . . . 4 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴 ≼ (𝑥𝐶) → 𝐴𝐶))
3626, 35orim12d 966 . . 3 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → ((𝐴* (𝑥𝐵) ∨ 𝐴 ≼ (𝑥𝐶)) → (𝐴* 𝐵𝐴𝐶)))
3714, 36mpd 15 . 2 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴* 𝐵𝐴𝐶))
385, 37exlimddv 1933 1 ((𝐴 × 𝐴) ≼ (𝐵𝐶) → (𝐴* 𝐵𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wex 1776  wcel 2106  Vcvv 3478  cun 3961  cin 3962  wss 3963   class class class wbr 5148   × cxp 5687  cen 8981  cdom 8982  * cwdom 9602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-1st 8013  df-2nd 8014  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-wdom 9603
This theorem is referenced by:  pwdjudom  10253
  Copyright terms: Public domain W3C validator