![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domfi | Structured version Visualization version GIF version |
Description: A set dominated by a finite set is finite. (Contributed by NM, 23-Mar-2006.) (Revised by Mario Carneiro, 12-Mar-2015.) |
Ref | Expression |
---|---|
domfi | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domeng 8326 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐵 ≼ 𝐴 ↔ ∃𝑥(𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) | |
2 | ssfi 8539 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ⊆ 𝐴) → 𝑥 ∈ Fin) | |
3 | 2 | adantrl 704 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) → 𝑥 ∈ Fin) |
4 | enfii 8536 | . . . . . . 7 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥) → 𝐵 ∈ Fin) | |
5 | 4 | adantrr 705 | . . . . . 6 ⊢ ((𝑥 ∈ Fin ∧ (𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) → 𝐵 ∈ Fin) |
6 | 3, 5 | sylancom 580 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) → 𝐵 ∈ Fin) |
7 | 6 | ex 405 | . . . 4 ⊢ (𝐴 ∈ Fin → ((𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝐵 ∈ Fin)) |
8 | 7 | exlimdv 1893 | . . 3 ⊢ (𝐴 ∈ Fin → (∃𝑥(𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝐵 ∈ Fin)) |
9 | 1, 8 | sylbid 232 | . 2 ⊢ (𝐴 ∈ Fin → (𝐵 ≼ 𝐴 → 𝐵 ∈ Fin)) |
10 | 9 | imp 398 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∃wex 1743 ∈ wcel 2051 ⊆ wss 3831 class class class wbr 4934 ≈ cen 8309 ≼ cdom 8310 Fincfn 8312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3419 df-sbc 3684 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-tp 4449 df-op 4451 df-uni 4718 df-br 4935 df-opab 4997 df-tr 5036 df-id 5316 df-eprel 5321 df-po 5330 df-so 5331 df-fr 5370 df-we 5372 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-ord 6037 df-on 6038 df-lim 6039 df-suc 6040 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-om 7403 df-er 8095 df-en 8313 df-dom 8314 df-fin 8316 |
This theorem is referenced by: xpfir 8541 dmfi 8603 fofi 8611 pwfilem 8619 pwfi 8620 sdom2en01 9528 isfin1-2 9611 fin67 9621 fin1a2lem9 9634 gchdju1 9882 hashdomi 13560 symggen 18371 cmpsub 21727 ufinffr 22256 alexsubALT 22378 ovolicc2lem4 23839 aannenlem1 24635 ffsrn 30241 locfinreflem 30780 lindsenlbs 34368 harinf 39068 kelac2lem 39101 disjinfi 40915 |
Copyright terms: Public domain | W3C validator |