| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domfi | Structured version Visualization version GIF version | ||
| Description: A set dominated by a finite set is finite. (Contributed by NM, 23-Mar-2006.) (Revised by Mario Carneiro, 12-Mar-2015.) |
| Ref | Expression |
|---|---|
| domfi | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domeng 8977 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐵 ≼ 𝐴 ↔ ∃𝑥(𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) | |
| 2 | ssfi 9187 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ⊆ 𝐴) → 𝑥 ∈ Fin) | |
| 3 | 2 | adantrl 716 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) → 𝑥 ∈ Fin) |
| 4 | enfii 9200 | . . . . . . 7 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥) → 𝐵 ∈ Fin) | |
| 5 | 4 | adantrr 717 | . . . . . 6 ⊢ ((𝑥 ∈ Fin ∧ (𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) → 𝐵 ∈ Fin) |
| 6 | 3, 5 | sylancom 588 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) → 𝐵 ∈ Fin) |
| 7 | 6 | ex 412 | . . . 4 ⊢ (𝐴 ∈ Fin → ((𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝐵 ∈ Fin)) |
| 8 | 7 | exlimdv 1933 | . . 3 ⊢ (𝐴 ∈ Fin → (∃𝑥(𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝐵 ∈ Fin)) |
| 9 | 1, 8 | sylbid 240 | . 2 ⊢ (𝐴 ∈ Fin → (𝐵 ≼ 𝐴 → 𝐵 ∈ Fin)) |
| 10 | 9 | imp 406 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ⊆ wss 3926 class class class wbr 5119 ≈ cen 8956 ≼ cdom 8957 Fincfn 8959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-om 7862 df-1o 8480 df-en 8960 df-dom 8961 df-fin 8963 |
| This theorem is referenced by: domtrfi 9207 domtrfir 9208 sdomdomtrfi 9215 php3 9223 onomeneq 9237 xpfir 9272 findcard3 9290 fofi 9323 fodomfir 9340 dmfi 9347 sdom2en01 10316 isfin1-2 10399 fin67 10409 fin1a2lem9 10422 gchdju1 10670 hashdomi 14398 symggen 19451 cmpsub 23338 ufinffr 23867 alexsubALT 23989 ovolicc2lem4 25473 aannenlem1 26288 madefi 27876 ffsrn 32706 locfinreflem 33871 lindsenlbs 37639 harinf 43058 kelac2lem 43088 disjinfi 45216 |
| Copyright terms: Public domain | W3C validator |