Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > domfi | Structured version Visualization version GIF version |
Description: A set dominated by a finite set is finite. (Contributed by NM, 23-Mar-2006.) (Revised by Mario Carneiro, 12-Mar-2015.) |
Ref | Expression |
---|---|
domfi | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domeng 8707 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐵 ≼ 𝐴 ↔ ∃𝑥(𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) | |
2 | ssfi 8918 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ⊆ 𝐴) → 𝑥 ∈ Fin) | |
3 | 2 | adantrl 712 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) → 𝑥 ∈ Fin) |
4 | enfii 8932 | . . . . . . 7 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥) → 𝐵 ∈ Fin) | |
5 | 4 | adantrr 713 | . . . . . 6 ⊢ ((𝑥 ∈ Fin ∧ (𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) → 𝐵 ∈ Fin) |
6 | 3, 5 | sylancom 587 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) → 𝐵 ∈ Fin) |
7 | 6 | ex 412 | . . . 4 ⊢ (𝐴 ∈ Fin → ((𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝐵 ∈ Fin)) |
8 | 7 | exlimdv 1937 | . . 3 ⊢ (𝐴 ∈ Fin → (∃𝑥(𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝐵 ∈ Fin)) |
9 | 1, 8 | sylbid 239 | . 2 ⊢ (𝐴 ∈ Fin → (𝐵 ≼ 𝐴 → 𝐵 ∈ Fin)) |
10 | 9 | imp 406 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ⊆ wss 3883 class class class wbr 5070 ≈ cen 8688 ≼ cdom 8689 Fincfn 8691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-en 8692 df-dom 8693 df-fin 8695 |
This theorem is referenced by: domtrfi 8938 xpfir 8970 dmfi 9027 fofi 9035 pwfilemOLD 9043 pwfiOLD 9044 sdom2en01 9989 isfin1-2 10072 fin67 10082 fin1a2lem9 10095 gchdju1 10343 hashdomi 14023 symggen 18993 cmpsub 22459 ufinffr 22988 alexsubALT 23110 ovolicc2lem4 24589 aannenlem1 25393 ffsrn 30966 locfinreflem 31692 lindsenlbs 35699 harinf 40772 kelac2lem 40805 disjinfi 42620 |
Copyright terms: Public domain | W3C validator |