MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domfi Structured version   Visualization version   GIF version

Theorem domfi 9139
Description: A set dominated by a finite set is finite. (Contributed by NM, 23-Mar-2006.) (Revised by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
domfi ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)

Proof of Theorem domfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 domeng 8905 . . 3 (𝐴 ∈ Fin → (𝐵𝐴 ↔ ∃𝑥(𝐵𝑥𝑥𝐴)))
2 ssfi 9120 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑥𝐴) → 𝑥 ∈ Fin)
32adantrl 715 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝐵𝑥𝑥𝐴)) → 𝑥 ∈ Fin)
4 enfii 9136 . . . . . . 7 ((𝑥 ∈ Fin ∧ 𝐵𝑥) → 𝐵 ∈ Fin)
54adantrr 716 . . . . . 6 ((𝑥 ∈ Fin ∧ (𝐵𝑥𝑥𝐴)) → 𝐵 ∈ Fin)
63, 5sylancom 589 . . . . 5 ((𝐴 ∈ Fin ∧ (𝐵𝑥𝑥𝐴)) → 𝐵 ∈ Fin)
76ex 414 . . . 4 (𝐴 ∈ Fin → ((𝐵𝑥𝑥𝐴) → 𝐵 ∈ Fin))
87exlimdv 1937 . . 3 (𝐴 ∈ Fin → (∃𝑥(𝐵𝑥𝑥𝐴) → 𝐵 ∈ Fin))
91, 8sylbid 239 . 2 (𝐴 ∈ Fin → (𝐵𝐴𝐵 ∈ Fin))
109imp 408 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wex 1782  wcel 2107  wss 3911   class class class wbr 5106  cen 8883  cdom 8884  Fincfn 8886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-om 7804  df-1o 8413  df-en 8887  df-dom 8888  df-fin 8890
This theorem is referenced by:  domtrfi  9143  domtrfir  9144  sdomdomtrfi  9151  php3  9159  onomeneq  9175  xpfir  9213  findcard3  9232  dmfi  9277  fofi  9285  pwfilemOLD  9293  pwfiOLD  9294  sdom2en01  10243  isfin1-2  10326  fin67  10336  fin1a2lem9  10349  gchdju1  10597  hashdomi  14286  symggen  19257  cmpsub  22767  ufinffr  23296  alexsubALT  23418  ovolicc2lem4  24900  aannenlem1  25704  ffsrn  31693  locfinreflem  32478  lindsenlbs  36119  harinf  41401  kelac2lem  41434  disjinfi  43500
  Copyright terms: Public domain W3C validator