| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domfi | Structured version Visualization version GIF version | ||
| Description: A set dominated by a finite set is finite. (Contributed by NM, 23-Mar-2006.) (Revised by Mario Carneiro, 12-Mar-2015.) |
| Ref | Expression |
|---|---|
| domfi | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domeng 8885 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐵 ≼ 𝐴 ↔ ∃𝑥(𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) | |
| 2 | ssfi 9082 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ⊆ 𝐴) → 𝑥 ∈ Fin) | |
| 3 | 2 | adantrl 716 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) → 𝑥 ∈ Fin) |
| 4 | enfii 9095 | . . . . . . 7 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥) → 𝐵 ∈ Fin) | |
| 5 | 4 | adantrr 717 | . . . . . 6 ⊢ ((𝑥 ∈ Fin ∧ (𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) → 𝐵 ∈ Fin) |
| 6 | 3, 5 | sylancom 588 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) → 𝐵 ∈ Fin) |
| 7 | 6 | ex 412 | . . . 4 ⊢ (𝐴 ∈ Fin → ((𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝐵 ∈ Fin)) |
| 8 | 7 | exlimdv 1934 | . . 3 ⊢ (𝐴 ∈ Fin → (∃𝑥(𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝐵 ∈ Fin)) |
| 9 | 1, 8 | sylbid 240 | . 2 ⊢ (𝐴 ∈ Fin → (𝐵 ≼ 𝐴 → 𝐵 ∈ Fin)) |
| 10 | 9 | imp 406 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 ⊆ wss 3897 class class class wbr 5089 ≈ cen 8866 ≼ cdom 8867 Fincfn 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1o 8385 df-en 8870 df-dom 8871 df-fin 8873 |
| This theorem is referenced by: domtrfi 9102 domtrfir 9103 sdomdomtrfi 9110 php3 9118 onomeneq 9123 xpfir 9152 findcard3 9167 fofi 9197 fodomfir 9212 dmfi 9219 sdom2en01 10193 isfin1-2 10276 fin67 10286 fin1a2lem9 10299 gchdju1 10547 hashdomi 14287 symggen 19382 cmpsub 23315 ufinffr 23844 alexsubALT 23966 ovolicc2lem4 25448 aannenlem1 26263 madefi 27858 ffsrn 32711 locfinreflem 33853 lindsenlbs 37665 harinf 43137 kelac2lem 43167 disjinfi 45299 |
| Copyright terms: Public domain | W3C validator |