![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domfi | Structured version Visualization version GIF version |
Description: A set dominated by a finite set is finite. (Contributed by NM, 23-Mar-2006.) (Revised by Mario Carneiro, 12-Mar-2015.) |
Ref | Expression |
---|---|
domfi | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domeng 8958 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐵 ≼ 𝐴 ↔ ∃𝑥(𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) | |
2 | ssfi 9173 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ⊆ 𝐴) → 𝑥 ∈ Fin) | |
3 | 2 | adantrl 715 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) → 𝑥 ∈ Fin) |
4 | enfii 9189 | . . . . . . 7 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥) → 𝐵 ∈ Fin) | |
5 | 4 | adantrr 716 | . . . . . 6 ⊢ ((𝑥 ∈ Fin ∧ (𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) → 𝐵 ∈ Fin) |
6 | 3, 5 | sylancom 589 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) → 𝐵 ∈ Fin) |
7 | 6 | ex 414 | . . . 4 ⊢ (𝐴 ∈ Fin → ((𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝐵 ∈ Fin)) |
8 | 7 | exlimdv 1937 | . . 3 ⊢ (𝐴 ∈ Fin → (∃𝑥(𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝐵 ∈ Fin)) |
9 | 1, 8 | sylbid 239 | . 2 ⊢ (𝐴 ∈ Fin → (𝐵 ≼ 𝐴 → 𝐵 ∈ Fin)) |
10 | 9 | imp 408 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∃wex 1782 ∈ wcel 2107 ⊆ wss 3949 class class class wbr 5149 ≈ cen 8936 ≼ cdom 8937 Fincfn 8939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-om 7856 df-1o 8466 df-en 8940 df-dom 8941 df-fin 8943 |
This theorem is referenced by: domtrfi 9196 domtrfir 9197 sdomdomtrfi 9204 php3 9212 onomeneq 9228 xpfir 9266 findcard3 9285 dmfi 9330 fofi 9338 pwfilemOLD 9346 pwfiOLD 9347 sdom2en01 10297 isfin1-2 10380 fin67 10390 fin1a2lem9 10403 gchdju1 10651 hashdomi 14340 symggen 19338 cmpsub 22904 ufinffr 23433 alexsubALT 23555 ovolicc2lem4 25037 aannenlem1 25841 ffsrn 31954 locfinreflem 32820 lindsenlbs 36483 harinf 41773 kelac2lem 41806 disjinfi 43891 |
Copyright terms: Public domain | W3C validator |