MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domfi Structured version   Visualization version   GIF version

Theorem domfi 9192
Description: A set dominated by a finite set is finite. (Contributed by NM, 23-Mar-2006.) (Revised by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
domfi ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)

Proof of Theorem domfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 domeng 8958 . . 3 (𝐴 ∈ Fin → (𝐵𝐴 ↔ ∃𝑥(𝐵𝑥𝑥𝐴)))
2 ssfi 9173 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑥𝐴) → 𝑥 ∈ Fin)
32adantrl 715 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝐵𝑥𝑥𝐴)) → 𝑥 ∈ Fin)
4 enfii 9189 . . . . . . 7 ((𝑥 ∈ Fin ∧ 𝐵𝑥) → 𝐵 ∈ Fin)
54adantrr 716 . . . . . 6 ((𝑥 ∈ Fin ∧ (𝐵𝑥𝑥𝐴)) → 𝐵 ∈ Fin)
63, 5sylancom 589 . . . . 5 ((𝐴 ∈ Fin ∧ (𝐵𝑥𝑥𝐴)) → 𝐵 ∈ Fin)
76ex 414 . . . 4 (𝐴 ∈ Fin → ((𝐵𝑥𝑥𝐴) → 𝐵 ∈ Fin))
87exlimdv 1937 . . 3 (𝐴 ∈ Fin → (∃𝑥(𝐵𝑥𝑥𝐴) → 𝐵 ∈ Fin))
91, 8sylbid 239 . 2 (𝐴 ∈ Fin → (𝐵𝐴𝐵 ∈ Fin))
109imp 408 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wex 1782  wcel 2107  wss 3949   class class class wbr 5149  cen 8936  cdom 8937  Fincfn 8939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-om 7856  df-1o 8466  df-en 8940  df-dom 8941  df-fin 8943
This theorem is referenced by:  domtrfi  9196  domtrfir  9197  sdomdomtrfi  9204  php3  9212  onomeneq  9228  xpfir  9266  findcard3  9285  dmfi  9330  fofi  9338  pwfilemOLD  9346  pwfiOLD  9347  sdom2en01  10297  isfin1-2  10380  fin67  10390  fin1a2lem9  10403  gchdju1  10651  hashdomi  14340  symggen  19338  cmpsub  22904  ufinffr  23433  alexsubALT  23555  ovolicc2lem4  25037  aannenlem1  25841  ffsrn  31954  locfinreflem  32820  lindsenlbs  36483  harinf  41773  kelac2lem  41806  disjinfi  43891
  Copyright terms: Public domain W3C validator