MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domfi Structured version   Visualization version   GIF version

Theorem domfi 9159
Description: A set dominated by a finite set is finite. (Contributed by NM, 23-Mar-2006.) (Revised by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
domfi ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)

Proof of Theorem domfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 domeng 8937 . . 3 (𝐴 ∈ Fin → (𝐵𝐴 ↔ ∃𝑥(𝐵𝑥𝑥𝐴)))
2 ssfi 9143 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑥𝐴) → 𝑥 ∈ Fin)
32adantrl 716 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝐵𝑥𝑥𝐴)) → 𝑥 ∈ Fin)
4 enfii 9156 . . . . . . 7 ((𝑥 ∈ Fin ∧ 𝐵𝑥) → 𝐵 ∈ Fin)
54adantrr 717 . . . . . 6 ((𝑥 ∈ Fin ∧ (𝐵𝑥𝑥𝐴)) → 𝐵 ∈ Fin)
63, 5sylancom 588 . . . . 5 ((𝐴 ∈ Fin ∧ (𝐵𝑥𝑥𝐴)) → 𝐵 ∈ Fin)
76ex 412 . . . 4 (𝐴 ∈ Fin → ((𝐵𝑥𝑥𝐴) → 𝐵 ∈ Fin))
87exlimdv 1933 . . 3 (𝐴 ∈ Fin → (∃𝑥(𝐵𝑥𝑥𝐴) → 𝐵 ∈ Fin))
91, 8sylbid 240 . 2 (𝐴 ∈ Fin → (𝐵𝐴𝐵 ∈ Fin))
109imp 406 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109  wss 3917   class class class wbr 5110  cen 8918  cdom 8919  Fincfn 8921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-en 8922  df-dom 8923  df-fin 8925
This theorem is referenced by:  domtrfi  9163  domtrfir  9164  sdomdomtrfi  9171  php3  9179  onomeneq  9184  xpfir  9218  findcard3  9236  fofi  9269  fodomfir  9286  dmfi  9293  sdom2en01  10262  isfin1-2  10345  fin67  10355  fin1a2lem9  10368  gchdju1  10616  hashdomi  14352  symggen  19407  cmpsub  23294  ufinffr  23823  alexsubALT  23945  ovolicc2lem4  25428  aannenlem1  26243  madefi  27831  ffsrn  32659  locfinreflem  33837  lindsenlbs  37616  harinf  43030  kelac2lem  43060  disjinfi  45193
  Copyright terms: Public domain W3C validator