MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbuhgr2vtx1edgblem Structured version   Visualization version   GIF version

Theorem nbuhgr2vtx1edgblem 29278
Description: Lemma for nbuhgr2vtx1edgb 29279. This reverse direction of nbgr2vtx1edg 29277 only holds for classes whose edges are subsets of the set of vertices, which is the property of hypergraphs. (Contributed by AV, 2-Nov-2020.) (Proof shortened by AV, 13-Feb-2022.)
Hypotheses
Ref Expression
nbgr2vtx1edg.v 𝑉 = (Vtx‘𝐺)
nbgr2vtx1edg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
nbuhgr2vtx1edgblem ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏} ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)) → {𝑎, 𝑏} ∈ 𝐸)
Distinct variable groups:   𝐸,𝑎,𝑏   𝐺,𝑎,𝑏   𝑉,𝑎,𝑏

Proof of Theorem nbuhgr2vtx1edgblem
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 nbgr2vtx1edg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 nbgr2vtx1edg.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2nbgrel 29267 . . 3 (𝑎 ∈ (𝐺 NeighbVtx 𝑏) ↔ ((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏 ∧ ∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒))
42eleq2i 2820 . . . . . . . . . 10 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
5 edguhgr 29056 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ 𝒫 (Vtx‘𝐺))
64, 5sylan2b 594 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → 𝑒 ∈ 𝒫 (Vtx‘𝐺))
71eqeq1i 2734 . . . . . . . . . . . . 13 (𝑉 = {𝑎, 𝑏} ↔ (Vtx‘𝐺) = {𝑎, 𝑏})
8 pweq 4577 . . . . . . . . . . . . . . 15 ((Vtx‘𝐺) = {𝑎, 𝑏} → 𝒫 (Vtx‘𝐺) = 𝒫 {𝑎, 𝑏})
98eleq2d 2814 . . . . . . . . . . . . . 14 ((Vtx‘𝐺) = {𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ∈ 𝒫 {𝑎, 𝑏}))
10 velpw 4568 . . . . . . . . . . . . . 14 (𝑒 ∈ 𝒫 {𝑎, 𝑏} ↔ 𝑒 ⊆ {𝑎, 𝑏})
119, 10bitrdi 287 . . . . . . . . . . . . 13 ((Vtx‘𝐺) = {𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ⊆ {𝑎, 𝑏}))
127, 11sylbi 217 . . . . . . . . . . . 12 (𝑉 = {𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ⊆ {𝑎, 𝑏}))
1312adantl 481 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ 𝑒𝐸) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ⊆ {𝑎, 𝑏}))
14 prcom 4696 . . . . . . . . . . . . . . 15 {𝑏, 𝑎} = {𝑎, 𝑏}
1514sseq1i 3975 . . . . . . . . . . . . . 14 ({𝑏, 𝑎} ⊆ 𝑒 ↔ {𝑎, 𝑏} ⊆ 𝑒)
16 eqss 3962 . . . . . . . . . . . . . . . 16 ({𝑎, 𝑏} = 𝑒 ↔ ({𝑎, 𝑏} ⊆ 𝑒𝑒 ⊆ {𝑎, 𝑏}))
17 eleq1a 2823 . . . . . . . . . . . . . . . . . 18 (𝑒𝐸 → ({𝑎, 𝑏} = 𝑒 → {𝑎, 𝑏} ∈ 𝐸))
1817a1i 11 . . . . . . . . . . . . . . . . 17 (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → (𝑒𝐸 → ({𝑎, 𝑏} = 𝑒 → {𝑎, 𝑏} ∈ 𝐸)))
1918com13 88 . . . . . . . . . . . . . . . 16 ({𝑎, 𝑏} = 𝑒 → (𝑒𝐸 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸)))
2016, 19sylbir 235 . . . . . . . . . . . . . . 15 (({𝑎, 𝑏} ⊆ 𝑒𝑒 ⊆ {𝑎, 𝑏}) → (𝑒𝐸 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸)))
2120ex 412 . . . . . . . . . . . . . 14 ({𝑎, 𝑏} ⊆ 𝑒 → (𝑒 ⊆ {𝑎, 𝑏} → (𝑒𝐸 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2215, 21sylbi 217 . . . . . . . . . . . . 13 ({𝑏, 𝑎} ⊆ 𝑒 → (𝑒 ⊆ {𝑎, 𝑏} → (𝑒𝐸 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2322com13 88 . . . . . . . . . . . 12 (𝑒𝐸 → (𝑒 ⊆ {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2423ad2antlr 727 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ 𝑒𝐸) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒 ⊆ {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2513, 24sylbid 240 . . . . . . . . . 10 (((𝐺 ∈ UHGraph ∧ 𝑒𝐸) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2625ex 412 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → (𝑉 = {𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸)))))
276, 26mpid 44 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → (𝑉 = {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2827impancom 451 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒𝐸 → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2928com14 96 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → (𝑒𝐸 → ({𝑏, 𝑎} ⊆ 𝑒 → ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → {𝑎, 𝑏} ∈ 𝐸))))
3029rexlimdv 3132 . . . . 5 (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → (∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒 → ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → {𝑎, 𝑏} ∈ 𝐸)))
31303impia 1117 . . . 4 (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏 ∧ ∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒) → ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → {𝑎, 𝑏} ∈ 𝐸))
3231com12 32 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏 ∧ ∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒) → {𝑎, 𝑏} ∈ 𝐸))
333, 32biimtrid 242 . 2 ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → (𝑎 ∈ (𝐺 NeighbVtx 𝑏) → {𝑎, 𝑏} ∈ 𝐸))
34333impia 1117 1 ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏} ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)) → {𝑎, 𝑏} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  wss 3914  𝒫 cpw 4563  {cpr 4591  cfv 6511  (class class class)co 7387  Vtxcvtx 28923  Edgcedg 28974  UHGraphcuhgr 28983   NeighbVtx cnbgr 29259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-edg 28975  df-uhgr 28985  df-nbgr 29260
This theorem is referenced by:  nbuhgr2vtx1edgb  29279
  Copyright terms: Public domain W3C validator