| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nbgr2vtx1edg.v | . . . 4
⊢ 𝑉 = (Vtx‘𝐺) | 
| 2 |  | nbgr2vtx1edg.e | . . . 4
⊢ 𝐸 = (Edg‘𝐺) | 
| 3 | 1, 2 | nbgrel 29357 | . . 3
⊢ (𝑎 ∈ (𝐺 NeighbVtx 𝑏) ↔ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏 ∧ ∃𝑒 ∈ 𝐸 {𝑏, 𝑎} ⊆ 𝑒)) | 
| 4 | 2 | eleq2i 2833 | . . . . . . . . . 10
⊢ (𝑒 ∈ 𝐸 ↔ 𝑒 ∈ (Edg‘𝐺)) | 
| 5 |  | edguhgr 29146 | . . . . . . . . . 10
⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ 𝒫 (Vtx‘𝐺)) | 
| 6 | 4, 5 | sylan2b 594 | . . . . . . . . 9
⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝒫 (Vtx‘𝐺)) | 
| 7 | 1 | eqeq1i 2742 | . . . . . . . . . . . . 13
⊢ (𝑉 = {𝑎, 𝑏} ↔ (Vtx‘𝐺) = {𝑎, 𝑏}) | 
| 8 |  | pweq 4614 | . . . . . . . . . . . . . . 15
⊢
((Vtx‘𝐺) =
{𝑎, 𝑏} → 𝒫 (Vtx‘𝐺) = 𝒫 {𝑎, 𝑏}) | 
| 9 | 8 | eleq2d 2827 | . . . . . . . . . . . . . 14
⊢
((Vtx‘𝐺) =
{𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ∈ 𝒫 {𝑎, 𝑏})) | 
| 10 |  | velpw 4605 | . . . . . . . . . . . . . 14
⊢ (𝑒 ∈ 𝒫 {𝑎, 𝑏} ↔ 𝑒 ⊆ {𝑎, 𝑏}) | 
| 11 | 9, 10 | bitrdi 287 | . . . . . . . . . . . . 13
⊢
((Vtx‘𝐺) =
{𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ⊆ {𝑎, 𝑏})) | 
| 12 | 7, 11 | sylbi 217 | . . . . . . . . . . . 12
⊢ (𝑉 = {𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ⊆ {𝑎, 𝑏})) | 
| 13 | 12 | adantl 481 | . . . . . . . . . . 11
⊢ (((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ⊆ {𝑎, 𝑏})) | 
| 14 |  | prcom 4732 | . . . . . . . . . . . . . . 15
⊢ {𝑏, 𝑎} = {𝑎, 𝑏} | 
| 15 | 14 | sseq1i 4012 | . . . . . . . . . . . . . 14
⊢ ({𝑏, 𝑎} ⊆ 𝑒 ↔ {𝑎, 𝑏} ⊆ 𝑒) | 
| 16 |  | eqss 3999 | . . . . . . . . . . . . . . . 16
⊢ ({𝑎, 𝑏} = 𝑒 ↔ ({𝑎, 𝑏} ⊆ 𝑒 ∧ 𝑒 ⊆ {𝑎, 𝑏})) | 
| 17 |  | eleq1a 2836 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑒 ∈ 𝐸 → ({𝑎, 𝑏} = 𝑒 → {𝑎, 𝑏} ∈ 𝐸)) | 
| 18 | 17 | a1i 11 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → (𝑒 ∈ 𝐸 → ({𝑎, 𝑏} = 𝑒 → {𝑎, 𝑏} ∈ 𝐸))) | 
| 19 | 18 | com13 88 | . . . . . . . . . . . . . . . 16
⊢ ({𝑎, 𝑏} = 𝑒 → (𝑒 ∈ 𝐸 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → {𝑎, 𝑏} ∈ 𝐸))) | 
| 20 | 16, 19 | sylbir 235 | . . . . . . . . . . . . . . 15
⊢ (({𝑎, 𝑏} ⊆ 𝑒 ∧ 𝑒 ⊆ {𝑎, 𝑏}) → (𝑒 ∈ 𝐸 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → {𝑎, 𝑏} ∈ 𝐸))) | 
| 21 | 20 | ex 412 | . . . . . . . . . . . . . 14
⊢ ({𝑎, 𝑏} ⊆ 𝑒 → (𝑒 ⊆ {𝑎, 𝑏} → (𝑒 ∈ 𝐸 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → {𝑎, 𝑏} ∈ 𝐸)))) | 
| 22 | 15, 21 | sylbi 217 | . . . . . . . . . . . . 13
⊢ ({𝑏, 𝑎} ⊆ 𝑒 → (𝑒 ⊆ {𝑎, 𝑏} → (𝑒 ∈ 𝐸 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → {𝑎, 𝑏} ∈ 𝐸)))) | 
| 23 | 22 | com13 88 | . . . . . . . . . . . 12
⊢ (𝑒 ∈ 𝐸 → (𝑒 ⊆ {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → {𝑎, 𝑏} ∈ 𝐸)))) | 
| 24 | 23 | ad2antlr 727 | . . . . . . . . . . 11
⊢ (((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒 ⊆ {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → {𝑎, 𝑏} ∈ 𝐸)))) | 
| 25 | 13, 24 | sylbid 240 | . . . . . . . . . 10
⊢ (((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → {𝑎, 𝑏} ∈ 𝐸)))) | 
| 26 | 25 | ex 412 | . . . . . . . . 9
⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) → (𝑉 = {𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → {𝑎, 𝑏} ∈ 𝐸))))) | 
| 27 | 6, 26 | mpid 44 | . . . . . . . 8
⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) → (𝑉 = {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → {𝑎, 𝑏} ∈ 𝐸)))) | 
| 28 | 27 | impancom 451 | . . . . . . 7
⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒 ∈ 𝐸 → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → {𝑎, 𝑏} ∈ 𝐸)))) | 
| 29 | 28 | com14 96 | . . . . . 6
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → (𝑒 ∈ 𝐸 → ({𝑏, 𝑎} ⊆ 𝑒 → ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → {𝑎, 𝑏} ∈ 𝐸)))) | 
| 30 | 29 | rexlimdv 3153 | . . . . 5
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → (∃𝑒 ∈ 𝐸 {𝑏, 𝑎} ⊆ 𝑒 → ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → {𝑎, 𝑏} ∈ 𝐸))) | 
| 31 | 30 | 3impia 1118 | . . . 4
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏 ∧ ∃𝑒 ∈ 𝐸 {𝑏, 𝑎} ⊆ 𝑒) → ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → {𝑎, 𝑏} ∈ 𝐸)) | 
| 32 | 31 | com12 32 | . . 3
⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏 ∧ ∃𝑒 ∈ 𝐸 {𝑏, 𝑎} ⊆ 𝑒) → {𝑎, 𝑏} ∈ 𝐸)) | 
| 33 | 3, 32 | biimtrid 242 | . 2
⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → (𝑎 ∈ (𝐺 NeighbVtx 𝑏) → {𝑎, 𝑏} ∈ 𝐸)) | 
| 34 | 33 | 3impia 1118 | 1
⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏} ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)) → {𝑎, 𝑏} ∈ 𝐸) |