MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbuhgr2vtx1edgblem Structured version   Visualization version   GIF version

Theorem nbuhgr2vtx1edgblem 28362
Description: Lemma for nbuhgr2vtx1edgb 28363. This reverse direction of nbgr2vtx1edg 28361 only holds for classes whose edges are subsets of the set of vertices, which is the property of hypergraphs. (Contributed by AV, 2-Nov-2020.) (Proof shortened by AV, 13-Feb-2022.)
Hypotheses
Ref Expression
nbgr2vtx1edg.v 𝑉 = (Vtx‘𝐺)
nbgr2vtx1edg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
nbuhgr2vtx1edgblem ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏} ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)) → {𝑎, 𝑏} ∈ 𝐸)
Distinct variable groups:   𝐸,𝑎,𝑏   𝐺,𝑎,𝑏   𝑉,𝑎,𝑏

Proof of Theorem nbuhgr2vtx1edgblem
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 nbgr2vtx1edg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 nbgr2vtx1edg.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2nbgrel 28351 . . 3 (𝑎 ∈ (𝐺 NeighbVtx 𝑏) ↔ ((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏 ∧ ∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒))
42eleq2i 2824 . . . . . . . . . 10 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
5 edguhgr 28143 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ 𝒫 (Vtx‘𝐺))
64, 5sylan2b 594 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → 𝑒 ∈ 𝒫 (Vtx‘𝐺))
71eqeq1i 2736 . . . . . . . . . . . . 13 (𝑉 = {𝑎, 𝑏} ↔ (Vtx‘𝐺) = {𝑎, 𝑏})
8 pweq 4579 . . . . . . . . . . . . . . 15 ((Vtx‘𝐺) = {𝑎, 𝑏} → 𝒫 (Vtx‘𝐺) = 𝒫 {𝑎, 𝑏})
98eleq2d 2818 . . . . . . . . . . . . . 14 ((Vtx‘𝐺) = {𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ∈ 𝒫 {𝑎, 𝑏}))
10 velpw 4570 . . . . . . . . . . . . . 14 (𝑒 ∈ 𝒫 {𝑎, 𝑏} ↔ 𝑒 ⊆ {𝑎, 𝑏})
119, 10bitrdi 286 . . . . . . . . . . . . 13 ((Vtx‘𝐺) = {𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ⊆ {𝑎, 𝑏}))
127, 11sylbi 216 . . . . . . . . . . . 12 (𝑉 = {𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ⊆ {𝑎, 𝑏}))
1312adantl 482 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ 𝑒𝐸) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ⊆ {𝑎, 𝑏}))
14 prcom 4698 . . . . . . . . . . . . . . 15 {𝑏, 𝑎} = {𝑎, 𝑏}
1514sseq1i 3975 . . . . . . . . . . . . . 14 ({𝑏, 𝑎} ⊆ 𝑒 ↔ {𝑎, 𝑏} ⊆ 𝑒)
16 eqss 3962 . . . . . . . . . . . . . . . 16 ({𝑎, 𝑏} = 𝑒 ↔ ({𝑎, 𝑏} ⊆ 𝑒𝑒 ⊆ {𝑎, 𝑏}))
17 eleq1a 2827 . . . . . . . . . . . . . . . . . 18 (𝑒𝐸 → ({𝑎, 𝑏} = 𝑒 → {𝑎, 𝑏} ∈ 𝐸))
1817a1i 11 . . . . . . . . . . . . . . . . 17 (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → (𝑒𝐸 → ({𝑎, 𝑏} = 𝑒 → {𝑎, 𝑏} ∈ 𝐸)))
1918com13 88 . . . . . . . . . . . . . . . 16 ({𝑎, 𝑏} = 𝑒 → (𝑒𝐸 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸)))
2016, 19sylbir 234 . . . . . . . . . . . . . . 15 (({𝑎, 𝑏} ⊆ 𝑒𝑒 ⊆ {𝑎, 𝑏}) → (𝑒𝐸 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸)))
2120ex 413 . . . . . . . . . . . . . 14 ({𝑎, 𝑏} ⊆ 𝑒 → (𝑒 ⊆ {𝑎, 𝑏} → (𝑒𝐸 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2215, 21sylbi 216 . . . . . . . . . . . . 13 ({𝑏, 𝑎} ⊆ 𝑒 → (𝑒 ⊆ {𝑎, 𝑏} → (𝑒𝐸 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2322com13 88 . . . . . . . . . . . 12 (𝑒𝐸 → (𝑒 ⊆ {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2423ad2antlr 725 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ 𝑒𝐸) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒 ⊆ {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2513, 24sylbid 239 . . . . . . . . . 10 (((𝐺 ∈ UHGraph ∧ 𝑒𝐸) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2625ex 413 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → (𝑉 = {𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸)))))
276, 26mpid 44 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → (𝑉 = {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2827impancom 452 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒𝐸 → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2928com14 96 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → (𝑒𝐸 → ({𝑏, 𝑎} ⊆ 𝑒 → ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → {𝑎, 𝑏} ∈ 𝐸))))
3029rexlimdv 3146 . . . . 5 (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → (∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒 → ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → {𝑎, 𝑏} ∈ 𝐸)))
31303impia 1117 . . . 4 (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏 ∧ ∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒) → ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → {𝑎, 𝑏} ∈ 𝐸))
3231com12 32 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏 ∧ ∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒) → {𝑎, 𝑏} ∈ 𝐸))
333, 32biimtrid 241 . 2 ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → (𝑎 ∈ (𝐺 NeighbVtx 𝑏) → {𝑎, 𝑏} ∈ 𝐸))
34333impia 1117 1 ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏} ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)) → {𝑎, 𝑏} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939  wrex 3069  wss 3913  𝒫 cpw 4565  {cpr 4593  cfv 6501  (class class class)co 7362  Vtxcvtx 28010  Edgcedg 28061  UHGraphcuhgr 28070   NeighbVtx cnbgr 28343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-1st 7926  df-2nd 7927  df-edg 28062  df-uhgr 28072  df-nbgr 28344
This theorem is referenced by:  nbuhgr2vtx1edgb  28363
  Copyright terms: Public domain W3C validator