| Step | Hyp | Ref
| Expression |
| 1 | | nbgr2vtx1edg.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
| 2 | | nbgr2vtx1edg.e |
. . . 4
⊢ 𝐸 = (Edg‘𝐺) |
| 3 | 1, 2 | nbgrel 29324 |
. . 3
⊢ (𝑎 ∈ (𝐺 NeighbVtx 𝑏) ↔ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏 ∧ ∃𝑒 ∈ 𝐸 {𝑏, 𝑎} ⊆ 𝑒)) |
| 4 | 2 | eleq2i 2827 |
. . . . . . . . . 10
⊢ (𝑒 ∈ 𝐸 ↔ 𝑒 ∈ (Edg‘𝐺)) |
| 5 | | edguhgr 29113 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ 𝒫 (Vtx‘𝐺)) |
| 6 | 4, 5 | sylan2b 594 |
. . . . . . . . 9
⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝒫 (Vtx‘𝐺)) |
| 7 | 1 | eqeq1i 2741 |
. . . . . . . . . . . . 13
⊢ (𝑉 = {𝑎, 𝑏} ↔ (Vtx‘𝐺) = {𝑎, 𝑏}) |
| 8 | | pweq 4594 |
. . . . . . . . . . . . . . 15
⊢
((Vtx‘𝐺) =
{𝑎, 𝑏} → 𝒫 (Vtx‘𝐺) = 𝒫 {𝑎, 𝑏}) |
| 9 | 8 | eleq2d 2821 |
. . . . . . . . . . . . . 14
⊢
((Vtx‘𝐺) =
{𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ∈ 𝒫 {𝑎, 𝑏})) |
| 10 | | velpw 4585 |
. . . . . . . . . . . . . 14
⊢ (𝑒 ∈ 𝒫 {𝑎, 𝑏} ↔ 𝑒 ⊆ {𝑎, 𝑏}) |
| 11 | 9, 10 | bitrdi 287 |
. . . . . . . . . . . . 13
⊢
((Vtx‘𝐺) =
{𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ⊆ {𝑎, 𝑏})) |
| 12 | 7, 11 | sylbi 217 |
. . . . . . . . . . . 12
⊢ (𝑉 = {𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ⊆ {𝑎, 𝑏})) |
| 13 | 12 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ⊆ {𝑎, 𝑏})) |
| 14 | | prcom 4713 |
. . . . . . . . . . . . . . 15
⊢ {𝑏, 𝑎} = {𝑎, 𝑏} |
| 15 | 14 | sseq1i 3992 |
. . . . . . . . . . . . . 14
⊢ ({𝑏, 𝑎} ⊆ 𝑒 ↔ {𝑎, 𝑏} ⊆ 𝑒) |
| 16 | | eqss 3979 |
. . . . . . . . . . . . . . . 16
⊢ ({𝑎, 𝑏} = 𝑒 ↔ ({𝑎, 𝑏} ⊆ 𝑒 ∧ 𝑒 ⊆ {𝑎, 𝑏})) |
| 17 | | eleq1a 2830 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 ∈ 𝐸 → ({𝑎, 𝑏} = 𝑒 → {𝑎, 𝑏} ∈ 𝐸)) |
| 18 | 17 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → (𝑒 ∈ 𝐸 → ({𝑎, 𝑏} = 𝑒 → {𝑎, 𝑏} ∈ 𝐸))) |
| 19 | 18 | com13 88 |
. . . . . . . . . . . . . . . 16
⊢ ({𝑎, 𝑏} = 𝑒 → (𝑒 ∈ 𝐸 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → {𝑎, 𝑏} ∈ 𝐸))) |
| 20 | 16, 19 | sylbir 235 |
. . . . . . . . . . . . . . 15
⊢ (({𝑎, 𝑏} ⊆ 𝑒 ∧ 𝑒 ⊆ {𝑎, 𝑏}) → (𝑒 ∈ 𝐸 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → {𝑎, 𝑏} ∈ 𝐸))) |
| 21 | 20 | ex 412 |
. . . . . . . . . . . . . 14
⊢ ({𝑎, 𝑏} ⊆ 𝑒 → (𝑒 ⊆ {𝑎, 𝑏} → (𝑒 ∈ 𝐸 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → {𝑎, 𝑏} ∈ 𝐸)))) |
| 22 | 15, 21 | sylbi 217 |
. . . . . . . . . . . . 13
⊢ ({𝑏, 𝑎} ⊆ 𝑒 → (𝑒 ⊆ {𝑎, 𝑏} → (𝑒 ∈ 𝐸 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → {𝑎, 𝑏} ∈ 𝐸)))) |
| 23 | 22 | com13 88 |
. . . . . . . . . . . 12
⊢ (𝑒 ∈ 𝐸 → (𝑒 ⊆ {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → {𝑎, 𝑏} ∈ 𝐸)))) |
| 24 | 23 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒 ⊆ {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → {𝑎, 𝑏} ∈ 𝐸)))) |
| 25 | 13, 24 | sylbid 240 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → {𝑎, 𝑏} ∈ 𝐸)))) |
| 26 | 25 | ex 412 |
. . . . . . . . 9
⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) → (𝑉 = {𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → {𝑎, 𝑏} ∈ 𝐸))))) |
| 27 | 6, 26 | mpid 44 |
. . . . . . . 8
⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸) → (𝑉 = {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → {𝑎, 𝑏} ∈ 𝐸)))) |
| 28 | 27 | impancom 451 |
. . . . . . 7
⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒 ∈ 𝐸 → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → {𝑎, 𝑏} ∈ 𝐸)))) |
| 29 | 28 | com14 96 |
. . . . . 6
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → (𝑒 ∈ 𝐸 → ({𝑏, 𝑎} ⊆ 𝑒 → ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → {𝑎, 𝑏} ∈ 𝐸)))) |
| 30 | 29 | rexlimdv 3140 |
. . . . 5
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → (∃𝑒 ∈ 𝐸 {𝑏, 𝑎} ⊆ 𝑒 → ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → {𝑎, 𝑏} ∈ 𝐸))) |
| 31 | 30 | 3impia 1117 |
. . . 4
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏 ∧ ∃𝑒 ∈ 𝐸 {𝑏, 𝑎} ⊆ 𝑒) → ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → {𝑎, 𝑏} ∈ 𝐸)) |
| 32 | 31 | com12 32 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏 ∧ ∃𝑒 ∈ 𝐸 {𝑏, 𝑎} ⊆ 𝑒) → {𝑎, 𝑏} ∈ 𝐸)) |
| 33 | 3, 32 | biimtrid 242 |
. 2
⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → (𝑎 ∈ (𝐺 NeighbVtx 𝑏) → {𝑎, 𝑏} ∈ 𝐸)) |
| 34 | 33 | 3impia 1117 |
1
⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏} ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)) → {𝑎, 𝑏} ∈ 𝐸) |