MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbuhgr2vtx1edgblem Structured version   Visualization version   GIF version

Theorem nbuhgr2vtx1edgblem 29254
Description: Lemma for nbuhgr2vtx1edgb 29255. This reverse direction of nbgr2vtx1edg 29253 only holds for classes whose edges are subsets of the set of vertices, which is the property of hypergraphs. (Contributed by AV, 2-Nov-2020.) (Proof shortened by AV, 13-Feb-2022.)
Hypotheses
Ref Expression
nbgr2vtx1edg.v 𝑉 = (Vtx‘𝐺)
nbgr2vtx1edg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
nbuhgr2vtx1edgblem ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏} ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)) → {𝑎, 𝑏} ∈ 𝐸)
Distinct variable groups:   𝐸,𝑎,𝑏   𝐺,𝑎,𝑏   𝑉,𝑎,𝑏

Proof of Theorem nbuhgr2vtx1edgblem
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 nbgr2vtx1edg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 nbgr2vtx1edg.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2nbgrel 29243 . . 3 (𝑎 ∈ (𝐺 NeighbVtx 𝑏) ↔ ((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏 ∧ ∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒))
42eleq2i 2820 . . . . . . . . . 10 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
5 edguhgr 29032 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ 𝒫 (Vtx‘𝐺))
64, 5sylan2b 594 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → 𝑒 ∈ 𝒫 (Vtx‘𝐺))
71eqeq1i 2734 . . . . . . . . . . . . 13 (𝑉 = {𝑎, 𝑏} ↔ (Vtx‘𝐺) = {𝑎, 𝑏})
8 pweq 4573 . . . . . . . . . . . . . . 15 ((Vtx‘𝐺) = {𝑎, 𝑏} → 𝒫 (Vtx‘𝐺) = 𝒫 {𝑎, 𝑏})
98eleq2d 2814 . . . . . . . . . . . . . 14 ((Vtx‘𝐺) = {𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ∈ 𝒫 {𝑎, 𝑏}))
10 velpw 4564 . . . . . . . . . . . . . 14 (𝑒 ∈ 𝒫 {𝑎, 𝑏} ↔ 𝑒 ⊆ {𝑎, 𝑏})
119, 10bitrdi 287 . . . . . . . . . . . . 13 ((Vtx‘𝐺) = {𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ⊆ {𝑎, 𝑏}))
127, 11sylbi 217 . . . . . . . . . . . 12 (𝑉 = {𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ⊆ {𝑎, 𝑏}))
1312adantl 481 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ 𝑒𝐸) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ⊆ {𝑎, 𝑏}))
14 prcom 4692 . . . . . . . . . . . . . . 15 {𝑏, 𝑎} = {𝑎, 𝑏}
1514sseq1i 3972 . . . . . . . . . . . . . 14 ({𝑏, 𝑎} ⊆ 𝑒 ↔ {𝑎, 𝑏} ⊆ 𝑒)
16 eqss 3959 . . . . . . . . . . . . . . . 16 ({𝑎, 𝑏} = 𝑒 ↔ ({𝑎, 𝑏} ⊆ 𝑒𝑒 ⊆ {𝑎, 𝑏}))
17 eleq1a 2823 . . . . . . . . . . . . . . . . . 18 (𝑒𝐸 → ({𝑎, 𝑏} = 𝑒 → {𝑎, 𝑏} ∈ 𝐸))
1817a1i 11 . . . . . . . . . . . . . . . . 17 (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → (𝑒𝐸 → ({𝑎, 𝑏} = 𝑒 → {𝑎, 𝑏} ∈ 𝐸)))
1918com13 88 . . . . . . . . . . . . . . . 16 ({𝑎, 𝑏} = 𝑒 → (𝑒𝐸 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸)))
2016, 19sylbir 235 . . . . . . . . . . . . . . 15 (({𝑎, 𝑏} ⊆ 𝑒𝑒 ⊆ {𝑎, 𝑏}) → (𝑒𝐸 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸)))
2120ex 412 . . . . . . . . . . . . . 14 ({𝑎, 𝑏} ⊆ 𝑒 → (𝑒 ⊆ {𝑎, 𝑏} → (𝑒𝐸 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2215, 21sylbi 217 . . . . . . . . . . . . 13 ({𝑏, 𝑎} ⊆ 𝑒 → (𝑒 ⊆ {𝑎, 𝑏} → (𝑒𝐸 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2322com13 88 . . . . . . . . . . . 12 (𝑒𝐸 → (𝑒 ⊆ {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2423ad2antlr 727 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ 𝑒𝐸) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒 ⊆ {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2513, 24sylbid 240 . . . . . . . . . 10 (((𝐺 ∈ UHGraph ∧ 𝑒𝐸) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2625ex 412 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → (𝑉 = {𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸)))))
276, 26mpid 44 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → (𝑉 = {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2827impancom 451 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒𝐸 → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2928com14 96 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → (𝑒𝐸 → ({𝑏, 𝑎} ⊆ 𝑒 → ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → {𝑎, 𝑏} ∈ 𝐸))))
3029rexlimdv 3132 . . . . 5 (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → (∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒 → ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → {𝑎, 𝑏} ∈ 𝐸)))
31303impia 1117 . . . 4 (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏 ∧ ∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒) → ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → {𝑎, 𝑏} ∈ 𝐸))
3231com12 32 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏 ∧ ∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒) → {𝑎, 𝑏} ∈ 𝐸))
333, 32biimtrid 242 . 2 ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → (𝑎 ∈ (𝐺 NeighbVtx 𝑏) → {𝑎, 𝑏} ∈ 𝐸))
34333impia 1117 1 ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏} ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)) → {𝑎, 𝑏} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  wss 3911  𝒫 cpw 4559  {cpr 4587  cfv 6499  (class class class)co 7369  Vtxcvtx 28899  Edgcedg 28950  UHGraphcuhgr 28959   NeighbVtx cnbgr 29235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-edg 28951  df-uhgr 28961  df-nbgr 29236
This theorem is referenced by:  nbuhgr2vtx1edgb  29255
  Copyright terms: Public domain W3C validator