MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbuhgr2vtx1edgblem Structured version   Visualization version   GIF version

Theorem nbuhgr2vtx1edgblem 29368
Description: Lemma for nbuhgr2vtx1edgb 29369. This reverse direction of nbgr2vtx1edg 29367 only holds for classes whose edges are subsets of the set of vertices, which is the property of hypergraphs. (Contributed by AV, 2-Nov-2020.) (Proof shortened by AV, 13-Feb-2022.)
Hypotheses
Ref Expression
nbgr2vtx1edg.v 𝑉 = (Vtx‘𝐺)
nbgr2vtx1edg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
nbuhgr2vtx1edgblem ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏} ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)) → {𝑎, 𝑏} ∈ 𝐸)
Distinct variable groups:   𝐸,𝑎,𝑏   𝐺,𝑎,𝑏   𝑉,𝑎,𝑏

Proof of Theorem nbuhgr2vtx1edgblem
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 nbgr2vtx1edg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 nbgr2vtx1edg.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2nbgrel 29357 . . 3 (𝑎 ∈ (𝐺 NeighbVtx 𝑏) ↔ ((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏 ∧ ∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒))
42eleq2i 2833 . . . . . . . . . 10 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
5 edguhgr 29146 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ 𝒫 (Vtx‘𝐺))
64, 5sylan2b 594 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → 𝑒 ∈ 𝒫 (Vtx‘𝐺))
71eqeq1i 2742 . . . . . . . . . . . . 13 (𝑉 = {𝑎, 𝑏} ↔ (Vtx‘𝐺) = {𝑎, 𝑏})
8 pweq 4614 . . . . . . . . . . . . . . 15 ((Vtx‘𝐺) = {𝑎, 𝑏} → 𝒫 (Vtx‘𝐺) = 𝒫 {𝑎, 𝑏})
98eleq2d 2827 . . . . . . . . . . . . . 14 ((Vtx‘𝐺) = {𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ∈ 𝒫 {𝑎, 𝑏}))
10 velpw 4605 . . . . . . . . . . . . . 14 (𝑒 ∈ 𝒫 {𝑎, 𝑏} ↔ 𝑒 ⊆ {𝑎, 𝑏})
119, 10bitrdi 287 . . . . . . . . . . . . 13 ((Vtx‘𝐺) = {𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ⊆ {𝑎, 𝑏}))
127, 11sylbi 217 . . . . . . . . . . . 12 (𝑉 = {𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ⊆ {𝑎, 𝑏}))
1312adantl 481 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ 𝑒𝐸) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ⊆ {𝑎, 𝑏}))
14 prcom 4732 . . . . . . . . . . . . . . 15 {𝑏, 𝑎} = {𝑎, 𝑏}
1514sseq1i 4012 . . . . . . . . . . . . . 14 ({𝑏, 𝑎} ⊆ 𝑒 ↔ {𝑎, 𝑏} ⊆ 𝑒)
16 eqss 3999 . . . . . . . . . . . . . . . 16 ({𝑎, 𝑏} = 𝑒 ↔ ({𝑎, 𝑏} ⊆ 𝑒𝑒 ⊆ {𝑎, 𝑏}))
17 eleq1a 2836 . . . . . . . . . . . . . . . . . 18 (𝑒𝐸 → ({𝑎, 𝑏} = 𝑒 → {𝑎, 𝑏} ∈ 𝐸))
1817a1i 11 . . . . . . . . . . . . . . . . 17 (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → (𝑒𝐸 → ({𝑎, 𝑏} = 𝑒 → {𝑎, 𝑏} ∈ 𝐸)))
1918com13 88 . . . . . . . . . . . . . . . 16 ({𝑎, 𝑏} = 𝑒 → (𝑒𝐸 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸)))
2016, 19sylbir 235 . . . . . . . . . . . . . . 15 (({𝑎, 𝑏} ⊆ 𝑒𝑒 ⊆ {𝑎, 𝑏}) → (𝑒𝐸 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸)))
2120ex 412 . . . . . . . . . . . . . 14 ({𝑎, 𝑏} ⊆ 𝑒 → (𝑒 ⊆ {𝑎, 𝑏} → (𝑒𝐸 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2215, 21sylbi 217 . . . . . . . . . . . . 13 ({𝑏, 𝑎} ⊆ 𝑒 → (𝑒 ⊆ {𝑎, 𝑏} → (𝑒𝐸 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2322com13 88 . . . . . . . . . . . 12 (𝑒𝐸 → (𝑒 ⊆ {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2423ad2antlr 727 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ 𝑒𝐸) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒 ⊆ {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2513, 24sylbid 240 . . . . . . . . . 10 (((𝐺 ∈ UHGraph ∧ 𝑒𝐸) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2625ex 412 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → (𝑉 = {𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸)))))
276, 26mpid 44 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → (𝑉 = {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2827impancom 451 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒𝐸 → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2928com14 96 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → (𝑒𝐸 → ({𝑏, 𝑎} ⊆ 𝑒 → ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → {𝑎, 𝑏} ∈ 𝐸))))
3029rexlimdv 3153 . . . . 5 (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → (∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒 → ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → {𝑎, 𝑏} ∈ 𝐸)))
31303impia 1118 . . . 4 (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏 ∧ ∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒) → ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → {𝑎, 𝑏} ∈ 𝐸))
3231com12 32 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏 ∧ ∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒) → {𝑎, 𝑏} ∈ 𝐸))
333, 32biimtrid 242 . 2 ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → (𝑎 ∈ (𝐺 NeighbVtx 𝑏) → {𝑎, 𝑏} ∈ 𝐸))
34333impia 1118 1 ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏} ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)) → {𝑎, 𝑏} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wrex 3070  wss 3951  𝒫 cpw 4600  {cpr 4628  cfv 6561  (class class class)co 7431  Vtxcvtx 29013  Edgcedg 29064  UHGraphcuhgr 29073   NeighbVtx cnbgr 29349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-edg 29065  df-uhgr 29075  df-nbgr 29350
This theorem is referenced by:  nbuhgr2vtx1edgb  29369
  Copyright terms: Public domain W3C validator