| Step | Hyp | Ref
| Expression |
| 1 | | isflf 23966 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝐴 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢)))) |
| 2 | | flftg.l |
. . . . 5
⊢ 𝐽 = (topGen‘𝐵) |
| 3 | 2 | raleqi 3308 |
. . . 4
⊢
(∀𝑢 ∈
𝐽 (𝐴 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢) ↔ ∀𝑢 ∈ (topGen‘𝐵)(𝐴 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢)) |
| 4 | | simpl1 1191 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 5 | | topontop 22886 |
. . . . . . . . 9
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 6 | 4, 5 | syl 17 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐽 ∈ Top) |
| 7 | 2, 6 | eqeltrrid 2838 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → (topGen‘𝐵) ∈ Top) |
| 8 | | tgclb 22943 |
. . . . . . 7
⊢ (𝐵 ∈ TopBases ↔
(topGen‘𝐵) ∈
Top) |
| 9 | 7, 8 | sylibr 234 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐵 ∈ TopBases) |
| 10 | | bastg 22939 |
. . . . . 6
⊢ (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵)) |
| 11 | | eleq2w 2817 |
. . . . . . . . 9
⊢ (𝑢 = 𝑜 → (𝐴 ∈ 𝑢 ↔ 𝐴 ∈ 𝑜)) |
| 12 | | sseq2 3992 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑜 → ((𝐹 “ 𝑠) ⊆ 𝑢 ↔ (𝐹 “ 𝑠) ⊆ 𝑜)) |
| 13 | 12 | rexbidv 3166 |
. . . . . . . . 9
⊢ (𝑢 = 𝑜 → (∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢 ↔ ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜)) |
| 14 | 11, 13 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑢 = 𝑜 → ((𝐴 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢) ↔ (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜))) |
| 15 | 14 | cbvralvw 3224 |
. . . . . . 7
⊢
(∀𝑢 ∈
(topGen‘𝐵)(𝐴 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢) ↔ ∀𝑜 ∈ (topGen‘𝐵)(𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜)) |
| 16 | | ssralv 4034 |
. . . . . . 7
⊢ (𝐵 ⊆ (topGen‘𝐵) → (∀𝑜 ∈ (topGen‘𝐵)(𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜) → ∀𝑜 ∈ 𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜))) |
| 17 | 15, 16 | biimtrid 242 |
. . . . . 6
⊢ (𝐵 ⊆ (topGen‘𝐵) → (∀𝑢 ∈ (topGen‘𝐵)(𝐴 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢) → ∀𝑜 ∈ 𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜))) |
| 18 | 9, 10, 17 | 3syl 18 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → (∀𝑢 ∈ (topGen‘𝐵)(𝐴 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢) → ∀𝑜 ∈ 𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜))) |
| 19 | | tg2 22938 |
. . . . . . . 8
⊢ ((𝑢 ∈ (topGen‘𝐵) ∧ 𝐴 ∈ 𝑢) → ∃𝑜 ∈ 𝐵 (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢)) |
| 20 | | r19.29 3101 |
. . . . . . . . . 10
⊢
((∀𝑜 ∈
𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜) ∧ ∃𝑜 ∈ 𝐵 (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢)) → ∃𝑜 ∈ 𝐵 ((𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜) ∧ (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢))) |
| 21 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢) → 𝐴 ∈ 𝑜) |
| 22 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢) → 𝑜 ⊆ 𝑢) |
| 23 | | sstr2 3972 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 “ 𝑠) ⊆ 𝑜 → (𝑜 ⊆ 𝑢 → (𝐹 “ 𝑠) ⊆ 𝑢)) |
| 24 | 22, 23 | syl5com 31 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢) → ((𝐹 “ 𝑠) ⊆ 𝑜 → (𝐹 “ 𝑠) ⊆ 𝑢)) |
| 25 | 24 | reximdv 3157 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢) → (∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢)) |
| 26 | 21, 25 | embantd 59 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢) → ((𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜) → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢)) |
| 27 | 26 | impcom 407 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜) ∧ (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢)) → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢) |
| 28 | 27 | rexlimivw 3138 |
. . . . . . . . . 10
⊢
(∃𝑜 ∈
𝐵 ((𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜) ∧ (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢)) → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢) |
| 29 | 20, 28 | syl 17 |
. . . . . . . . 9
⊢
((∀𝑜 ∈
𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜) ∧ ∃𝑜 ∈ 𝐵 (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢)) → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢) |
| 30 | 29 | ex 412 |
. . . . . . . 8
⊢
(∀𝑜 ∈
𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜) → (∃𝑜 ∈ 𝐵 (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢) → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢)) |
| 31 | 19, 30 | syl5 34 |
. . . . . . 7
⊢
(∀𝑜 ∈
𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜) → ((𝑢 ∈ (topGen‘𝐵) ∧ 𝐴 ∈ 𝑢) → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢)) |
| 32 | 31 | expdimp 452 |
. . . . . 6
⊢
((∀𝑜 ∈
𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜) ∧ 𝑢 ∈ (topGen‘𝐵)) → (𝐴 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢)) |
| 33 | 32 | ralrimiva 3133 |
. . . . 5
⊢
(∀𝑜 ∈
𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜) → ∀𝑢 ∈ (topGen‘𝐵)(𝐴 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢)) |
| 34 | 18, 33 | impbid1 225 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → (∀𝑢 ∈ (topGen‘𝐵)(𝐴 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢) ↔ ∀𝑜 ∈ 𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜))) |
| 35 | 3, 34 | bitrid 283 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → (∀𝑢 ∈ 𝐽 (𝐴 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢) ↔ ∀𝑜 ∈ 𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜))) |
| 36 | 35 | pm5.32da 579 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐴 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝐴 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢)) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜)))) |
| 37 | 1, 36 | bitrd 279 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜)))) |