MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flftg Structured version   Visualization version   GIF version

Theorem flftg 23951
Description: Limit points of a function can be defined using topological bases. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
flftg.l 𝐽 = (topGen‘𝐵)
Assertion
Ref Expression
flftg ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))))
Distinct variable groups:   𝑜,𝑠,𝐴   𝐵,𝑜   𝑜,𝐹,𝑠   𝐽,𝑠   𝑜,𝐿,𝑠   𝑋,𝑠   𝑌,𝑠
Allowed substitution hints:   𝐵(𝑠)   𝐽(𝑜)   𝑋(𝑜)   𝑌(𝑜)

Proof of Theorem flftg
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 isflf 23948 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑢𝐽 (𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))))
2 flftg.l . . . . 5 𝐽 = (topGen‘𝐵)
32raleqi 3307 . . . 4 (∀𝑢𝐽 (𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) ↔ ∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
4 simpl1 1191 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
5 topontop 22868 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
64, 5syl 17 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ Top)
72, 6eqeltrrid 2838 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (topGen‘𝐵) ∈ Top)
8 tgclb 22925 . . . . . . 7 (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)
97, 8sylibr 234 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → 𝐵 ∈ TopBases)
10 bastg 22921 . . . . . 6 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
11 eleq2w 2817 . . . . . . . . 9 (𝑢 = 𝑜 → (𝐴𝑢𝐴𝑜))
12 sseq2 3990 . . . . . . . . . 10 (𝑢 = 𝑜 → ((𝐹𝑠) ⊆ 𝑢 ↔ (𝐹𝑠) ⊆ 𝑜))
1312rexbidv 3166 . . . . . . . . 9 (𝑢 = 𝑜 → (∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢 ↔ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))
1411, 13imbi12d 344 . . . . . . . 8 (𝑢 = 𝑜 → ((𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) ↔ (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
1514cbvralvw 3223 . . . . . . 7 (∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) ↔ ∀𝑜 ∈ (topGen‘𝐵)(𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))
16 ssralv 4032 . . . . . . 7 (𝐵 ⊆ (topGen‘𝐵) → (∀𝑜 ∈ (topGen‘𝐵)(𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) → ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
1715, 16biimtrid 242 . . . . . 6 (𝐵 ⊆ (topGen‘𝐵) → (∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) → ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
189, 10, 173syl 18 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) → ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
19 tg2 22920 . . . . . . . 8 ((𝑢 ∈ (topGen‘𝐵) ∧ 𝐴𝑢) → ∃𝑜𝐵 (𝐴𝑜𝑜𝑢))
20 r19.29 3101 . . . . . . . . . 10 ((∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ ∃𝑜𝐵 (𝐴𝑜𝑜𝑢)) → ∃𝑜𝐵 ((𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ (𝐴𝑜𝑜𝑢)))
21 simpl 482 . . . . . . . . . . . . 13 ((𝐴𝑜𝑜𝑢) → 𝐴𝑜)
22 simpr 484 . . . . . . . . . . . . . . 15 ((𝐴𝑜𝑜𝑢) → 𝑜𝑢)
23 sstr2 3970 . . . . . . . . . . . . . . 15 ((𝐹𝑠) ⊆ 𝑜 → (𝑜𝑢 → (𝐹𝑠) ⊆ 𝑢))
2422, 23syl5com 31 . . . . . . . . . . . . . 14 ((𝐴𝑜𝑜𝑢) → ((𝐹𝑠) ⊆ 𝑜 → (𝐹𝑠) ⊆ 𝑢))
2524reximdv 3157 . . . . . . . . . . . . 13 ((𝐴𝑜𝑜𝑢) → (∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
2621, 25embantd 59 . . . . . . . . . . . 12 ((𝐴𝑜𝑜𝑢) → ((𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
2726impcom 407 . . . . . . . . . . 11 (((𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ (𝐴𝑜𝑜𝑢)) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢)
2827rexlimivw 3138 . . . . . . . . . 10 (∃𝑜𝐵 ((𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ (𝐴𝑜𝑜𝑢)) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢)
2920, 28syl 17 . . . . . . . . 9 ((∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ ∃𝑜𝐵 (𝐴𝑜𝑜𝑢)) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢)
3029ex 412 . . . . . . . 8 (∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) → (∃𝑜𝐵 (𝐴𝑜𝑜𝑢) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
3119, 30syl5 34 . . . . . . 7 (∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) → ((𝑢 ∈ (topGen‘𝐵) ∧ 𝐴𝑢) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
3231expdimp 452 . . . . . 6 ((∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ 𝑢 ∈ (topGen‘𝐵)) → (𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
3332ralrimiva 3133 . . . . 5 (∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) → ∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
3418, 33impbid1 225 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) ↔ ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
353, 34bitrid 283 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑢𝐽 (𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) ↔ ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
3635pm5.32da 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ∀𝑢𝐽 (𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))))
371, 36bitrd 279 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  wrex 3059  wss 3931  cima 5668  wf 6537  cfv 6541  (class class class)co 7413  topGenctg 17454  Topctop 22848  TopOnctopon 22865  TopBasesctb 22900  Filcfil 23800   fLimf cflf 23890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-map 8850  df-topgen 17460  df-fbas 21324  df-fg 21325  df-top 22849  df-topon 22866  df-bases 22901  df-ntr 22975  df-nei 23053  df-fil 23801  df-fm 23893  df-flim 23894  df-flf 23895
This theorem is referenced by:  txflf  23961
  Copyright terms: Public domain W3C validator