MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flftg Structured version   Visualization version   GIF version

Theorem flftg 23909
Description: Limit points of a function can be defined using topological bases. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
flftg.l 𝐽 = (topGen‘𝐵)
Assertion
Ref Expression
flftg ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))))
Distinct variable groups:   𝑜,𝑠,𝐴   𝐵,𝑜   𝑜,𝐹,𝑠   𝐽,𝑠   𝑜,𝐿,𝑠   𝑋,𝑠   𝑌,𝑠
Allowed substitution hints:   𝐵(𝑠)   𝐽(𝑜)   𝑋(𝑜)   𝑌(𝑜)

Proof of Theorem flftg
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 isflf 23906 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑢𝐽 (𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))))
2 flftg.l . . . . 5 𝐽 = (topGen‘𝐵)
32raleqi 3290 . . . 4 (∀𝑢𝐽 (𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) ↔ ∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
4 simpl1 1192 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
5 topontop 22826 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
64, 5syl 17 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ Top)
72, 6eqeltrrid 2836 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (topGen‘𝐵) ∈ Top)
8 tgclb 22883 . . . . . . 7 (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)
97, 8sylibr 234 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → 𝐵 ∈ TopBases)
10 bastg 22879 . . . . . 6 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
11 eleq2w 2815 . . . . . . . . 9 (𝑢 = 𝑜 → (𝐴𝑢𝐴𝑜))
12 sseq2 3961 . . . . . . . . . 10 (𝑢 = 𝑜 → ((𝐹𝑠) ⊆ 𝑢 ↔ (𝐹𝑠) ⊆ 𝑜))
1312rexbidv 3156 . . . . . . . . 9 (𝑢 = 𝑜 → (∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢 ↔ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))
1411, 13imbi12d 344 . . . . . . . 8 (𝑢 = 𝑜 → ((𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) ↔ (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
1514cbvralvw 3210 . . . . . . 7 (∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) ↔ ∀𝑜 ∈ (topGen‘𝐵)(𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))
16 ssralv 4003 . . . . . . 7 (𝐵 ⊆ (topGen‘𝐵) → (∀𝑜 ∈ (topGen‘𝐵)(𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) → ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
1715, 16biimtrid 242 . . . . . 6 (𝐵 ⊆ (topGen‘𝐵) → (∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) → ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
189, 10, 173syl 18 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) → ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
19 tg2 22878 . . . . . . . 8 ((𝑢 ∈ (topGen‘𝐵) ∧ 𝐴𝑢) → ∃𝑜𝐵 (𝐴𝑜𝑜𝑢))
20 r19.29 3095 . . . . . . . . . 10 ((∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ ∃𝑜𝐵 (𝐴𝑜𝑜𝑢)) → ∃𝑜𝐵 ((𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ (𝐴𝑜𝑜𝑢)))
21 simpl 482 . . . . . . . . . . . . 13 ((𝐴𝑜𝑜𝑢) → 𝐴𝑜)
22 simpr 484 . . . . . . . . . . . . . . 15 ((𝐴𝑜𝑜𝑢) → 𝑜𝑢)
23 sstr2 3941 . . . . . . . . . . . . . . 15 ((𝐹𝑠) ⊆ 𝑜 → (𝑜𝑢 → (𝐹𝑠) ⊆ 𝑢))
2422, 23syl5com 31 . . . . . . . . . . . . . 14 ((𝐴𝑜𝑜𝑢) → ((𝐹𝑠) ⊆ 𝑜 → (𝐹𝑠) ⊆ 𝑢))
2524reximdv 3147 . . . . . . . . . . . . 13 ((𝐴𝑜𝑜𝑢) → (∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
2621, 25embantd 59 . . . . . . . . . . . 12 ((𝐴𝑜𝑜𝑢) → ((𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
2726impcom 407 . . . . . . . . . . 11 (((𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ (𝐴𝑜𝑜𝑢)) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢)
2827rexlimivw 3129 . . . . . . . . . 10 (∃𝑜𝐵 ((𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ (𝐴𝑜𝑜𝑢)) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢)
2920, 28syl 17 . . . . . . . . 9 ((∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ ∃𝑜𝐵 (𝐴𝑜𝑜𝑢)) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢)
3029ex 412 . . . . . . . 8 (∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) → (∃𝑜𝐵 (𝐴𝑜𝑜𝑢) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
3119, 30syl5 34 . . . . . . 7 (∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) → ((𝑢 ∈ (topGen‘𝐵) ∧ 𝐴𝑢) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
3231expdimp 452 . . . . . 6 ((∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ 𝑢 ∈ (topGen‘𝐵)) → (𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
3332ralrimiva 3124 . . . . 5 (∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) → ∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
3418, 33impbid1 225 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) ↔ ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
353, 34bitrid 283 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑢𝐽 (𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) ↔ ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
3635pm5.32da 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ∀𝑢𝐽 (𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))))
371, 36bitrd 279 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3902  cima 5619  wf 6477  cfv 6481  (class class class)co 7346  topGenctg 17338  Topctop 22806  TopOnctopon 22823  TopBasesctb 22858  Filcfil 23758   fLimf cflf 23848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-topgen 17344  df-fbas 21286  df-fg 21287  df-top 22807  df-topon 22824  df-bases 22859  df-ntr 22933  df-nei 23011  df-fil 23759  df-fm 23851  df-flim 23852  df-flf 23853
This theorem is referenced by:  txflf  23919
  Copyright terms: Public domain W3C validator