Step | Hyp | Ref
| Expression |
1 | | isflf 23052 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝐴 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢)))) |
2 | | flftg.l |
. . . . 5
⊢ 𝐽 = (topGen‘𝐵) |
3 | 2 | raleqi 3337 |
. . . 4
⊢
(∀𝑢 ∈
𝐽 (𝐴 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢) ↔ ∀𝑢 ∈ (topGen‘𝐵)(𝐴 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢)) |
4 | | simpl1 1189 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
5 | | topontop 21970 |
. . . . . . . . 9
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
6 | 4, 5 | syl 17 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐽 ∈ Top) |
7 | 2, 6 | eqeltrrid 2844 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → (topGen‘𝐵) ∈ Top) |
8 | | tgclb 22028 |
. . . . . . 7
⊢ (𝐵 ∈ TopBases ↔
(topGen‘𝐵) ∈
Top) |
9 | 7, 8 | sylibr 233 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐵 ∈ TopBases) |
10 | | bastg 22024 |
. . . . . 6
⊢ (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵)) |
11 | | eleq2w 2822 |
. . . . . . . . 9
⊢ (𝑢 = 𝑜 → (𝐴 ∈ 𝑢 ↔ 𝐴 ∈ 𝑜)) |
12 | | sseq2 3943 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑜 → ((𝐹 “ 𝑠) ⊆ 𝑢 ↔ (𝐹 “ 𝑠) ⊆ 𝑜)) |
13 | 12 | rexbidv 3225 |
. . . . . . . . 9
⊢ (𝑢 = 𝑜 → (∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢 ↔ ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜)) |
14 | 11, 13 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑢 = 𝑜 → ((𝐴 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢) ↔ (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜))) |
15 | 14 | cbvralvw 3372 |
. . . . . . 7
⊢
(∀𝑢 ∈
(topGen‘𝐵)(𝐴 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢) ↔ ∀𝑜 ∈ (topGen‘𝐵)(𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜)) |
16 | | ssralv 3983 |
. . . . . . 7
⊢ (𝐵 ⊆ (topGen‘𝐵) → (∀𝑜 ∈ (topGen‘𝐵)(𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜) → ∀𝑜 ∈ 𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜))) |
17 | 15, 16 | syl5bi 241 |
. . . . . 6
⊢ (𝐵 ⊆ (topGen‘𝐵) → (∀𝑢 ∈ (topGen‘𝐵)(𝐴 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢) → ∀𝑜 ∈ 𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜))) |
18 | 9, 10, 17 | 3syl 18 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → (∀𝑢 ∈ (topGen‘𝐵)(𝐴 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢) → ∀𝑜 ∈ 𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜))) |
19 | | tg2 22023 |
. . . . . . . 8
⊢ ((𝑢 ∈ (topGen‘𝐵) ∧ 𝐴 ∈ 𝑢) → ∃𝑜 ∈ 𝐵 (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢)) |
20 | | r19.29 3183 |
. . . . . . . . . 10
⊢
((∀𝑜 ∈
𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜) ∧ ∃𝑜 ∈ 𝐵 (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢)) → ∃𝑜 ∈ 𝐵 ((𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜) ∧ (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢))) |
21 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢) → 𝐴 ∈ 𝑜) |
22 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢) → 𝑜 ⊆ 𝑢) |
23 | | sstr2 3924 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 “ 𝑠) ⊆ 𝑜 → (𝑜 ⊆ 𝑢 → (𝐹 “ 𝑠) ⊆ 𝑢)) |
24 | 22, 23 | syl5com 31 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢) → ((𝐹 “ 𝑠) ⊆ 𝑜 → (𝐹 “ 𝑠) ⊆ 𝑢)) |
25 | 24 | reximdv 3201 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢) → (∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢)) |
26 | 21, 25 | embantd 59 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢) → ((𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜) → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢)) |
27 | 26 | impcom 407 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜) ∧ (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢)) → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢) |
28 | 27 | rexlimivw 3210 |
. . . . . . . . . 10
⊢
(∃𝑜 ∈
𝐵 ((𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜) ∧ (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢)) → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢) |
29 | 20, 28 | syl 17 |
. . . . . . . . 9
⊢
((∀𝑜 ∈
𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜) ∧ ∃𝑜 ∈ 𝐵 (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢)) → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢) |
30 | 29 | ex 412 |
. . . . . . . 8
⊢
(∀𝑜 ∈
𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜) → (∃𝑜 ∈ 𝐵 (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢) → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢)) |
31 | 19, 30 | syl5 34 |
. . . . . . 7
⊢
(∀𝑜 ∈
𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜) → ((𝑢 ∈ (topGen‘𝐵) ∧ 𝐴 ∈ 𝑢) → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢)) |
32 | 31 | expdimp 452 |
. . . . . 6
⊢
((∀𝑜 ∈
𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜) ∧ 𝑢 ∈ (topGen‘𝐵)) → (𝐴 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢)) |
33 | 32 | ralrimiva 3107 |
. . . . 5
⊢
(∀𝑜 ∈
𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜) → ∀𝑢 ∈ (topGen‘𝐵)(𝐴 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢)) |
34 | 18, 33 | impbid1 224 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → (∀𝑢 ∈ (topGen‘𝐵)(𝐴 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢) ↔ ∀𝑜 ∈ 𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜))) |
35 | 3, 34 | syl5bb 282 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → (∀𝑢 ∈ 𝐽 (𝐴 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢) ↔ ∀𝑜 ∈ 𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜))) |
36 | 35 | pm5.32da 578 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐴 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝐴 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑢)) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜)))) |
37 | 1, 36 | bitrd 278 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜)))) |