MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flftg Structured version   Visualization version   GIF version

Theorem flftg 22607
Description: Limit points of a function can be defined using topological bases. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
flftg.l 𝐽 = (topGen‘𝐵)
Assertion
Ref Expression
flftg ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))))
Distinct variable groups:   𝑜,𝑠,𝐴   𝐵,𝑜   𝑜,𝐹,𝑠   𝐽,𝑠   𝑜,𝐿,𝑠   𝑋,𝑠   𝑌,𝑠
Allowed substitution hints:   𝐵(𝑠)   𝐽(𝑜)   𝑋(𝑜)   𝑌(𝑜)

Proof of Theorem flftg
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 isflf 22604 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑢𝐽 (𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))))
2 flftg.l . . . . 5 𝐽 = (topGen‘𝐵)
32raleqi 3416 . . . 4 (∀𝑢𝐽 (𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) ↔ ∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
4 simpl1 1187 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
5 topontop 21524 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
64, 5syl 17 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ Top)
72, 6eqeltrrid 2921 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (topGen‘𝐵) ∈ Top)
8 tgclb 21581 . . . . . . 7 (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)
97, 8sylibr 236 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → 𝐵 ∈ TopBases)
10 bastg 21577 . . . . . 6 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
11 eleq2w 2899 . . . . . . . . 9 (𝑢 = 𝑜 → (𝐴𝑢𝐴𝑜))
12 sseq2 3996 . . . . . . . . . 10 (𝑢 = 𝑜 → ((𝐹𝑠) ⊆ 𝑢 ↔ (𝐹𝑠) ⊆ 𝑜))
1312rexbidv 3300 . . . . . . . . 9 (𝑢 = 𝑜 → (∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢 ↔ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))
1411, 13imbi12d 347 . . . . . . . 8 (𝑢 = 𝑜 → ((𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) ↔ (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
1514cbvralvw 3452 . . . . . . 7 (∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) ↔ ∀𝑜 ∈ (topGen‘𝐵)(𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))
16 ssralv 4036 . . . . . . 7 (𝐵 ⊆ (topGen‘𝐵) → (∀𝑜 ∈ (topGen‘𝐵)(𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) → ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
1715, 16syl5bi 244 . . . . . 6 (𝐵 ⊆ (topGen‘𝐵) → (∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) → ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
189, 10, 173syl 18 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) → ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
19 tg2 21576 . . . . . . . 8 ((𝑢 ∈ (topGen‘𝐵) ∧ 𝐴𝑢) → ∃𝑜𝐵 (𝐴𝑜𝑜𝑢))
20 r19.29 3257 . . . . . . . . . 10 ((∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ ∃𝑜𝐵 (𝐴𝑜𝑜𝑢)) → ∃𝑜𝐵 ((𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ (𝐴𝑜𝑜𝑢)))
21 simpl 485 . . . . . . . . . . . . 13 ((𝐴𝑜𝑜𝑢) → 𝐴𝑜)
22 simpr 487 . . . . . . . . . . . . . . 15 ((𝐴𝑜𝑜𝑢) → 𝑜𝑢)
23 sstr2 3977 . . . . . . . . . . . . . . 15 ((𝐹𝑠) ⊆ 𝑜 → (𝑜𝑢 → (𝐹𝑠) ⊆ 𝑢))
2422, 23syl5com 31 . . . . . . . . . . . . . 14 ((𝐴𝑜𝑜𝑢) → ((𝐹𝑠) ⊆ 𝑜 → (𝐹𝑠) ⊆ 𝑢))
2524reximdv 3276 . . . . . . . . . . . . 13 ((𝐴𝑜𝑜𝑢) → (∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
2621, 25embantd 59 . . . . . . . . . . . 12 ((𝐴𝑜𝑜𝑢) → ((𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
2726impcom 410 . . . . . . . . . . 11 (((𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ (𝐴𝑜𝑜𝑢)) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢)
2827rexlimivw 3285 . . . . . . . . . 10 (∃𝑜𝐵 ((𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ (𝐴𝑜𝑜𝑢)) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢)
2920, 28syl 17 . . . . . . . . 9 ((∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ ∃𝑜𝐵 (𝐴𝑜𝑜𝑢)) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢)
3029ex 415 . . . . . . . 8 (∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) → (∃𝑜𝐵 (𝐴𝑜𝑜𝑢) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
3119, 30syl5 34 . . . . . . 7 (∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) → ((𝑢 ∈ (topGen‘𝐵) ∧ 𝐴𝑢) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
3231expdimp 455 . . . . . 6 ((∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ 𝑢 ∈ (topGen‘𝐵)) → (𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
3332ralrimiva 3185 . . . . 5 (∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) → ∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
3418, 33impbid1 227 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) ↔ ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
353, 34syl5bb 285 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑢𝐽 (𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) ↔ ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
3635pm5.32da 581 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ∀𝑢𝐽 (𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))))
371, 36bitrd 281 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  wrex 3142  wss 3939  cima 5561  wf 6354  cfv 6358  (class class class)co 7159  topGenctg 16714  Topctop 21504  TopOnctopon 21521  TopBasesctb 21556  Filcfil 22456   fLimf cflf 22546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-map 8411  df-topgen 16720  df-fbas 20545  df-fg 20546  df-top 21505  df-topon 21522  df-bases 21557  df-ntr 21631  df-nei 21709  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551
This theorem is referenced by:  txflf  22617
  Copyright terms: Public domain W3C validator