MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flftg Structured version   Visualization version   GIF version

Theorem flftg 22893
Description: Limit points of a function can be defined using topological bases. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
flftg.l 𝐽 = (topGen‘𝐵)
Assertion
Ref Expression
flftg ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))))
Distinct variable groups:   𝑜,𝑠,𝐴   𝐵,𝑜   𝑜,𝐹,𝑠   𝐽,𝑠   𝑜,𝐿,𝑠   𝑋,𝑠   𝑌,𝑠
Allowed substitution hints:   𝐵(𝑠)   𝐽(𝑜)   𝑋(𝑜)   𝑌(𝑜)

Proof of Theorem flftg
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 isflf 22890 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑢𝐽 (𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))))
2 flftg.l . . . . 5 𝐽 = (topGen‘𝐵)
32raleqi 3323 . . . 4 (∀𝑢𝐽 (𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) ↔ ∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
4 simpl1 1193 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
5 topontop 21810 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
64, 5syl 17 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ Top)
72, 6eqeltrrid 2843 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (topGen‘𝐵) ∈ Top)
8 tgclb 21867 . . . . . . 7 (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)
97, 8sylibr 237 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → 𝐵 ∈ TopBases)
10 bastg 21863 . . . . . 6 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
11 eleq2w 2821 . . . . . . . . 9 (𝑢 = 𝑜 → (𝐴𝑢𝐴𝑜))
12 sseq2 3927 . . . . . . . . . 10 (𝑢 = 𝑜 → ((𝐹𝑠) ⊆ 𝑢 ↔ (𝐹𝑠) ⊆ 𝑜))
1312rexbidv 3216 . . . . . . . . 9 (𝑢 = 𝑜 → (∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢 ↔ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))
1411, 13imbi12d 348 . . . . . . . 8 (𝑢 = 𝑜 → ((𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) ↔ (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
1514cbvralvw 3358 . . . . . . 7 (∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) ↔ ∀𝑜 ∈ (topGen‘𝐵)(𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))
16 ssralv 3967 . . . . . . 7 (𝐵 ⊆ (topGen‘𝐵) → (∀𝑜 ∈ (topGen‘𝐵)(𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) → ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
1715, 16syl5bi 245 . . . . . 6 (𝐵 ⊆ (topGen‘𝐵) → (∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) → ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
189, 10, 173syl 18 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) → ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
19 tg2 21862 . . . . . . . 8 ((𝑢 ∈ (topGen‘𝐵) ∧ 𝐴𝑢) → ∃𝑜𝐵 (𝐴𝑜𝑜𝑢))
20 r19.29 3176 . . . . . . . . . 10 ((∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ ∃𝑜𝐵 (𝐴𝑜𝑜𝑢)) → ∃𝑜𝐵 ((𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ (𝐴𝑜𝑜𝑢)))
21 simpl 486 . . . . . . . . . . . . 13 ((𝐴𝑜𝑜𝑢) → 𝐴𝑜)
22 simpr 488 . . . . . . . . . . . . . . 15 ((𝐴𝑜𝑜𝑢) → 𝑜𝑢)
23 sstr2 3908 . . . . . . . . . . . . . . 15 ((𝐹𝑠) ⊆ 𝑜 → (𝑜𝑢 → (𝐹𝑠) ⊆ 𝑢))
2422, 23syl5com 31 . . . . . . . . . . . . . 14 ((𝐴𝑜𝑜𝑢) → ((𝐹𝑠) ⊆ 𝑜 → (𝐹𝑠) ⊆ 𝑢))
2524reximdv 3192 . . . . . . . . . . . . 13 ((𝐴𝑜𝑜𝑢) → (∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
2621, 25embantd 59 . . . . . . . . . . . 12 ((𝐴𝑜𝑜𝑢) → ((𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
2726impcom 411 . . . . . . . . . . 11 (((𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ (𝐴𝑜𝑜𝑢)) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢)
2827rexlimivw 3201 . . . . . . . . . 10 (∃𝑜𝐵 ((𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ (𝐴𝑜𝑜𝑢)) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢)
2920, 28syl 17 . . . . . . . . 9 ((∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ ∃𝑜𝐵 (𝐴𝑜𝑜𝑢)) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢)
3029ex 416 . . . . . . . 8 (∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) → (∃𝑜𝐵 (𝐴𝑜𝑜𝑢) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
3119, 30syl5 34 . . . . . . 7 (∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) → ((𝑢 ∈ (topGen‘𝐵) ∧ 𝐴𝑢) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
3231expdimp 456 . . . . . 6 ((∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ 𝑢 ∈ (topGen‘𝐵)) → (𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
3332ralrimiva 3105 . . . . 5 (∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) → ∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
3418, 33impbid1 228 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) ↔ ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
353, 34syl5bb 286 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑢𝐽 (𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) ↔ ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
3635pm5.32da 582 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ∀𝑢𝐽 (𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))))
371, 36bitrd 282 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  wrex 3062  wss 3866  cima 5554  wf 6376  cfv 6380  (class class class)co 7213  topGenctg 16942  Topctop 21790  TopOnctopon 21807  TopBasesctb 21842  Filcfil 22742   fLimf cflf 22832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-map 8510  df-topgen 16948  df-fbas 20360  df-fg 20361  df-top 21791  df-topon 21808  df-bases 21843  df-ntr 21917  df-nei 21995  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837
This theorem is referenced by:  txflf  22903
  Copyright terms: Public domain W3C validator