MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conncompconn Structured version   Visualization version   GIF version

Theorem conncompconn 23375
Description: The connected component containing 𝐴 is connected. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
conncomp.2 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
Assertion
Ref Expression
conncompconn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝑆) ∈ Conn)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem conncompconn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 conncomp.2 . . . 4 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
2 uniiun 5039 . . . 4 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} = 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}𝑦
31, 2eqtri 2759 . . 3 𝑆 = 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}𝑦
43oveq2i 7421 . 2 (𝐽t 𝑆) = (𝐽t 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}𝑦)
5 simpl 482 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
6 simpr 484 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}) → 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
7 eleq2w 2819 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
8 oveq2 7418 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐽t 𝑥) = (𝐽t 𝑦))
98eleq1d 2820 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐽t 𝑥) ∈ Conn ↔ (𝐽t 𝑦) ∈ Conn))
107, 9anbi12d 632 . . . . . . 7 (𝑥 = 𝑦 → ((𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn) ↔ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn)))
1110elrab 3676 . . . . . 6 (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ↔ (𝑦 ∈ 𝒫 𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn)))
126, 11sylib 218 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}) → (𝑦 ∈ 𝒫 𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn)))
1312simpld 494 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}) → 𝑦 ∈ 𝒫 𝑋)
1413elpwid 4589 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}) → 𝑦𝑋)
1512simprd 495 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}) → (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))
1615simpld 494 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}) → 𝐴𝑦)
1715simprd 495 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}) → (𝐽t 𝑦) ∈ Conn)
185, 14, 16, 17iunconn 23371 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}𝑦) ∈ Conn)
194, 18eqeltrid 2839 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝑆) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3420  𝒫 cpw 4580   cuni 4888   ciun 4972  cfv 6536  (class class class)co 7410  t crest 17439  TopOnctopon 22853  Conncconn 23354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-en 8965  df-fin 8968  df-fi 9428  df-rest 17441  df-topgen 17462  df-top 22837  df-topon 22854  df-bases 22889  df-cld 22962  df-conn 23355
This theorem is referenced by:  conncompcld  23377  conncompclo  23378  tgpconncompeqg  24055  tgpconncomp  24056
  Copyright terms: Public domain W3C validator