Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > conncompconn | Structured version Visualization version GIF version |
Description: The connected component containing 𝐴 is connected. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
conncomp.2 | ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} |
Ref | Expression |
---|---|
conncompconn | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t 𝑆) ∈ Conn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | conncomp.2 | . . . 4 ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} | |
2 | uniiun 5005 | . . . 4 ⊢ ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} = ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}𝑦 | |
3 | 1, 2 | eqtri 2764 | . . 3 ⊢ 𝑆 = ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}𝑦 |
4 | 3 | oveq2i 7348 | . 2 ⊢ (𝐽 ↾t 𝑆) = (𝐽 ↾t ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}𝑦) |
5 | simpl 483 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) | |
6 | simpr 485 | . . . . . 6 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) → 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) | |
7 | eleq2w 2820 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) | |
8 | oveq2 7345 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝐽 ↾t 𝑥) = (𝐽 ↾t 𝑦)) | |
9 | 8 | eleq1d 2821 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ((𝐽 ↾t 𝑥) ∈ Conn ↔ (𝐽 ↾t 𝑦) ∈ Conn)) |
10 | 7, 9 | anbi12d 631 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn) ↔ (𝐴 ∈ 𝑦 ∧ (𝐽 ↾t 𝑦) ∈ Conn))) |
11 | 10 | elrab 3634 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ↔ (𝑦 ∈ 𝒫 𝑋 ∧ (𝐴 ∈ 𝑦 ∧ (𝐽 ↾t 𝑦) ∈ Conn))) |
12 | 6, 11 | sylib 217 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) → (𝑦 ∈ 𝒫 𝑋 ∧ (𝐴 ∈ 𝑦 ∧ (𝐽 ↾t 𝑦) ∈ Conn))) |
13 | 12 | simpld 495 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) → 𝑦 ∈ 𝒫 𝑋) |
14 | 13 | elpwid 4556 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) → 𝑦 ⊆ 𝑋) |
15 | 12 | simprd 496 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) → (𝐴 ∈ 𝑦 ∧ (𝐽 ↾t 𝑦) ∈ Conn)) |
16 | 15 | simpld 495 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) → 𝐴 ∈ 𝑦) |
17 | 15 | simprd 496 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) → (𝐽 ↾t 𝑦) ∈ Conn) |
18 | 5, 14, 16, 17 | iunconn 22685 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}𝑦) ∈ Conn) |
19 | 4, 18 | eqeltrid 2841 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t 𝑆) ∈ Conn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {crab 3403 𝒫 cpw 4547 ∪ cuni 4852 ∪ ciun 4941 ‘cfv 6479 (class class class)co 7337 ↾t crest 17228 TopOnctopon 22165 Conncconn 22668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-en 8805 df-fin 8808 df-fi 9268 df-rest 17230 df-topgen 17251 df-top 22149 df-topon 22166 df-bases 22202 df-cld 22276 df-conn 22669 |
This theorem is referenced by: conncompcld 22691 conncompclo 22692 tgpconncompeqg 23369 tgpconncomp 23370 |
Copyright terms: Public domain | W3C validator |