Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmseu Structured version   Visualization version   GIF version

Theorem cvmseu 35244
Description: Every element in 𝑇 is a member of a unique element of 𝑇. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmseu.1 𝐵 = 𝐶
Assertion
Ref Expression
cvmseu ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → ∃!𝑥𝑇 𝐴𝑥)
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝑥,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣,𝑥   𝑘,𝐽,𝑠,𝑢,𝑣,𝑥   𝑥,𝑆   𝑈,𝑘,𝑠,𝑢,𝑣,𝑥   𝑇,𝑠,𝑢,𝑣,𝑥   𝑢,𝐴,𝑣,𝑥   𝑣,𝐵,𝑥
Allowed substitution hints:   𝐴(𝑘,𝑠)   𝐵(𝑢,𝑘,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)   𝑇(𝑘)

Proof of Theorem cvmseu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpr2 1195 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝐴𝐵)
2 simpr3 1196 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → (𝐹𝐴) ∈ 𝑈)
3 cvmcn 35230 . . . . . . 7 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
43adantr 480 . . . . . 6 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝐹 ∈ (𝐶 Cn 𝐽))
5 cvmseu.1 . . . . . . 7 𝐵 = 𝐶
6 eqid 2740 . . . . . . 7 𝐽 = 𝐽
75, 6cnf 23275 . . . . . 6 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
8 ffn 6747 . . . . . 6 (𝐹:𝐵 𝐽𝐹 Fn 𝐵)
9 elpreima 7091 . . . . . 6 (𝐹 Fn 𝐵 → (𝐴 ∈ (𝐹𝑈) ↔ (𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)))
104, 7, 8, 94syl 19 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → (𝐴 ∈ (𝐹𝑈) ↔ (𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)))
111, 2, 10mpbir2and 712 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝐴 ∈ (𝐹𝑈))
12 simpr1 1194 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝑇 ∈ (𝑆𝑈))
13 cvmcov.1 . . . . . 6 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
1413cvmsuni 35237 . . . . 5 (𝑇 ∈ (𝑆𝑈) → 𝑇 = (𝐹𝑈))
1512, 14syl 17 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝑇 = (𝐹𝑈))
1611, 15eleqtrrd 2847 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝐴 𝑇)
17 eluni2 4935 . . 3 (𝐴 𝑇 ↔ ∃𝑥𝑇 𝐴𝑥)
1816, 17sylib 218 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → ∃𝑥𝑇 𝐴𝑥)
19 inelcm 4488 . . . 4 ((𝐴𝑥𝐴𝑧) → (𝑥𝑧) ≠ ∅)
2013cvmsdisj 35238 . . . . . . . 8 ((𝑇 ∈ (𝑆𝑈) ∧ 𝑥𝑇𝑧𝑇) → (𝑥 = 𝑧 ∨ (𝑥𝑧) = ∅))
21203expb 1120 . . . . . . 7 ((𝑇 ∈ (𝑆𝑈) ∧ (𝑥𝑇𝑧𝑇)) → (𝑥 = 𝑧 ∨ (𝑥𝑧) = ∅))
2212, 21sylan 579 . . . . . 6 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) ∧ (𝑥𝑇𝑧𝑇)) → (𝑥 = 𝑧 ∨ (𝑥𝑧) = ∅))
2322ord 863 . . . . 5 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) ∧ (𝑥𝑇𝑧𝑇)) → (¬ 𝑥 = 𝑧 → (𝑥𝑧) = ∅))
2423necon1ad 2963 . . . 4 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) ∧ (𝑥𝑇𝑧𝑇)) → ((𝑥𝑧) ≠ ∅ → 𝑥 = 𝑧))
2519, 24syl5 34 . . 3 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) ∧ (𝑥𝑇𝑧𝑇)) → ((𝐴𝑥𝐴𝑧) → 𝑥 = 𝑧))
2625ralrimivva 3208 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → ∀𝑥𝑇𝑧𝑇 ((𝐴𝑥𝐴𝑧) → 𝑥 = 𝑧))
27 eleq2w 2828 . . 3 (𝑥 = 𝑧 → (𝐴𝑥𝐴𝑧))
2827reu4 3753 . 2 (∃!𝑥𝑇 𝐴𝑥 ↔ (∃𝑥𝑇 𝐴𝑥 ∧ ∀𝑥𝑇𝑧𝑇 ((𝐴𝑥𝐴𝑧) → 𝑥 = 𝑧)))
2918, 26, 28sylanbrc 582 1 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → ∃!𝑥𝑇 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  ∃!wreu 3386  {crab 3443  cdif 3973  cin 3975  c0 4352  𝒫 cpw 4622  {csn 4648   cuni 4931  cmpt 5249  ccnv 5699  cres 5702  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  t crest 17480   Cn ccn 23253  Homeochmeo 23782   CovMap ccvm 35223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-top 22921  df-topon 22938  df-cn 23256  df-cvm 35224
This theorem is referenced by:  cvmsiota  35245
  Copyright terms: Public domain W3C validator