Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmseu Structured version   Visualization version   GIF version

Theorem cvmseu 32548
 Description: Every element in ∪ 𝑇 is a member of a unique element of 𝑇. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmseu.1 𝐵 = 𝐶
Assertion
Ref Expression
cvmseu ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → ∃!𝑥𝑇 𝐴𝑥)
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝑥,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣,𝑥   𝑘,𝐽,𝑠,𝑢,𝑣,𝑥   𝑥,𝑆   𝑈,𝑘,𝑠,𝑢,𝑣,𝑥   𝑇,𝑠,𝑢,𝑣,𝑥   𝑢,𝐴,𝑣,𝑥   𝑣,𝐵,𝑥
Allowed substitution hints:   𝐴(𝑘,𝑠)   𝐵(𝑢,𝑘,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)   𝑇(𝑘)

Proof of Theorem cvmseu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpr2 1192 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝐴𝐵)
2 simpr3 1193 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → (𝐹𝐴) ∈ 𝑈)
3 cvmcn 32534 . . . . . . 7 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
43adantr 484 . . . . . 6 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝐹 ∈ (𝐶 Cn 𝐽))
5 cvmseu.1 . . . . . . 7 𝐵 = 𝐶
6 eqid 2824 . . . . . . 7 𝐽 = 𝐽
75, 6cnf 21847 . . . . . 6 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
8 ffn 6502 . . . . . 6 (𝐹:𝐵 𝐽𝐹 Fn 𝐵)
9 elpreima 6816 . . . . . 6 (𝐹 Fn 𝐵 → (𝐴 ∈ (𝐹𝑈) ↔ (𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)))
104, 7, 8, 94syl 19 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → (𝐴 ∈ (𝐹𝑈) ↔ (𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)))
111, 2, 10mpbir2and 712 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝐴 ∈ (𝐹𝑈))
12 simpr1 1191 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝑇 ∈ (𝑆𝑈))
13 cvmcov.1 . . . . . 6 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
1413cvmsuni 32541 . . . . 5 (𝑇 ∈ (𝑆𝑈) → 𝑇 = (𝐹𝑈))
1512, 14syl 17 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝑇 = (𝐹𝑈))
1611, 15eleqtrrd 2919 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝐴 𝑇)
17 eluni2 4828 . . 3 (𝐴 𝑇 ↔ ∃𝑥𝑇 𝐴𝑥)
1816, 17sylib 221 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → ∃𝑥𝑇 𝐴𝑥)
19 inelcm 4396 . . . 4 ((𝐴𝑥𝐴𝑧) → (𝑥𝑧) ≠ ∅)
2013cvmsdisj 32542 . . . . . . . 8 ((𝑇 ∈ (𝑆𝑈) ∧ 𝑥𝑇𝑧𝑇) → (𝑥 = 𝑧 ∨ (𝑥𝑧) = ∅))
21203expb 1117 . . . . . . 7 ((𝑇 ∈ (𝑆𝑈) ∧ (𝑥𝑇𝑧𝑇)) → (𝑥 = 𝑧 ∨ (𝑥𝑧) = ∅))
2212, 21sylan 583 . . . . . 6 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) ∧ (𝑥𝑇𝑧𝑇)) → (𝑥 = 𝑧 ∨ (𝑥𝑧) = ∅))
2322ord 861 . . . . 5 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) ∧ (𝑥𝑇𝑧𝑇)) → (¬ 𝑥 = 𝑧 → (𝑥𝑧) = ∅))
2423necon1ad 3031 . . . 4 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) ∧ (𝑥𝑇𝑧𝑇)) → ((𝑥𝑧) ≠ ∅ → 𝑥 = 𝑧))
2519, 24syl5 34 . . 3 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) ∧ (𝑥𝑇𝑧𝑇)) → ((𝐴𝑥𝐴𝑧) → 𝑥 = 𝑧))
2625ralrimivva 3186 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → ∀𝑥𝑇𝑧𝑇 ((𝐴𝑥𝐴𝑧) → 𝑥 = 𝑧))
27 eleq2w 2899 . . 3 (𝑥 = 𝑧 → (𝐴𝑥𝐴𝑧))
2827reu4 3708 . 2 (∃!𝑥𝑇 𝐴𝑥 ↔ (∃𝑥𝑇 𝐴𝑥 ∧ ∀𝑥𝑇𝑧𝑇 ((𝐴𝑥𝐴𝑧) → 𝑥 = 𝑧)))
2918, 26, 28sylanbrc 586 1 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → ∃!𝑥𝑇 𝐴𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ≠ wne 3014  ∀wral 3133  ∃wrex 3134  ∃!wreu 3135  {crab 3137   ∖ cdif 3916   ∩ cin 3918  ∅c0 4275  𝒫 cpw 4521  {csn 4549  ∪ cuni 4824   ↦ cmpt 5132  ◡ccnv 5541   ↾ cres 5544   “ cima 5545   Fn wfn 6338  ⟶wf 6339  ‘cfv 6343  (class class class)co 7145   ↾t crest 16690   Cn ccn 21825  Homeochmeo 22354   CovMap ccvm 32527 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-op 4556  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-fv 6351  df-ov 7148  df-oprab 7149  df-mpo 7150  df-map 8398  df-top 21495  df-topon 21512  df-cn 21828  df-cvm 32528 This theorem is referenced by:  cvmsiota  32549
 Copyright terms: Public domain W3C validator