Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmseu Structured version   Visualization version   GIF version

Theorem cvmseu 33247
Description: Every element in 𝑇 is a member of a unique element of 𝑇. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmseu.1 𝐵 = 𝐶
Assertion
Ref Expression
cvmseu ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → ∃!𝑥𝑇 𝐴𝑥)
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝑥,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣,𝑥   𝑘,𝐽,𝑠,𝑢,𝑣,𝑥   𝑥,𝑆   𝑈,𝑘,𝑠,𝑢,𝑣,𝑥   𝑇,𝑠,𝑢,𝑣,𝑥   𝑢,𝐴,𝑣,𝑥   𝑣,𝐵,𝑥
Allowed substitution hints:   𝐴(𝑘,𝑠)   𝐵(𝑢,𝑘,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)   𝑇(𝑘)

Proof of Theorem cvmseu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpr2 1194 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝐴𝐵)
2 simpr3 1195 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → (𝐹𝐴) ∈ 𝑈)
3 cvmcn 33233 . . . . . . 7 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
43adantr 481 . . . . . 6 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝐹 ∈ (𝐶 Cn 𝐽))
5 cvmseu.1 . . . . . . 7 𝐵 = 𝐶
6 eqid 2740 . . . . . . 7 𝐽 = 𝐽
75, 6cnf 22408 . . . . . 6 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
8 ffn 6598 . . . . . 6 (𝐹:𝐵 𝐽𝐹 Fn 𝐵)
9 elpreima 6932 . . . . . 6 (𝐹 Fn 𝐵 → (𝐴 ∈ (𝐹𝑈) ↔ (𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)))
104, 7, 8, 94syl 19 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → (𝐴 ∈ (𝐹𝑈) ↔ (𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)))
111, 2, 10mpbir2and 710 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝐴 ∈ (𝐹𝑈))
12 simpr1 1193 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝑇 ∈ (𝑆𝑈))
13 cvmcov.1 . . . . . 6 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
1413cvmsuni 33240 . . . . 5 (𝑇 ∈ (𝑆𝑈) → 𝑇 = (𝐹𝑈))
1512, 14syl 17 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝑇 = (𝐹𝑈))
1611, 15eleqtrrd 2844 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝐴 𝑇)
17 eluni2 4849 . . 3 (𝐴 𝑇 ↔ ∃𝑥𝑇 𝐴𝑥)
1816, 17sylib 217 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → ∃𝑥𝑇 𝐴𝑥)
19 inelcm 4404 . . . 4 ((𝐴𝑥𝐴𝑧) → (𝑥𝑧) ≠ ∅)
2013cvmsdisj 33241 . . . . . . . 8 ((𝑇 ∈ (𝑆𝑈) ∧ 𝑥𝑇𝑧𝑇) → (𝑥 = 𝑧 ∨ (𝑥𝑧) = ∅))
21203expb 1119 . . . . . . 7 ((𝑇 ∈ (𝑆𝑈) ∧ (𝑥𝑇𝑧𝑇)) → (𝑥 = 𝑧 ∨ (𝑥𝑧) = ∅))
2212, 21sylan 580 . . . . . 6 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) ∧ (𝑥𝑇𝑧𝑇)) → (𝑥 = 𝑧 ∨ (𝑥𝑧) = ∅))
2322ord 861 . . . . 5 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) ∧ (𝑥𝑇𝑧𝑇)) → (¬ 𝑥 = 𝑧 → (𝑥𝑧) = ∅))
2423necon1ad 2962 . . . 4 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) ∧ (𝑥𝑇𝑧𝑇)) → ((𝑥𝑧) ≠ ∅ → 𝑥 = 𝑧))
2519, 24syl5 34 . . 3 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) ∧ (𝑥𝑇𝑧𝑇)) → ((𝐴𝑥𝐴𝑧) → 𝑥 = 𝑧))
2625ralrimivva 3117 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → ∀𝑥𝑇𝑧𝑇 ((𝐴𝑥𝐴𝑧) → 𝑥 = 𝑧))
27 eleq2w 2824 . . 3 (𝑥 = 𝑧 → (𝐴𝑥𝐴𝑧))
2827reu4 3670 . 2 (∃!𝑥𝑇 𝐴𝑥 ↔ (∃𝑥𝑇 𝐴𝑥 ∧ ∀𝑥𝑇𝑧𝑇 ((𝐴𝑥𝐴𝑧) → 𝑥 = 𝑧)))
2918, 26, 28sylanbrc 583 1 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → ∃!𝑥𝑇 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wral 3066  wrex 3067  ∃!wreu 3068  {crab 3070  cdif 3889  cin 3891  c0 4262  𝒫 cpw 4539  {csn 4567   cuni 4845  cmpt 5162  ccnv 5589  cres 5592  cima 5593   Fn wfn 6427  wf 6428  cfv 6432  (class class class)co 7272  t crest 17142   Cn ccn 22386  Homeochmeo 22915   CovMap ccvm 33226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-fv 6440  df-ov 7275  df-oprab 7276  df-mpo 7277  df-map 8609  df-top 22054  df-topon 22071  df-cn 22389  df-cvm 33227
This theorem is referenced by:  cvmsiota  33248
  Copyright terms: Public domain W3C validator