Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmseu Structured version   Visualization version   GIF version

Theorem cvmseu 33138
Description: Every element in 𝑇 is a member of a unique element of 𝑇. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmseu.1 𝐵 = 𝐶
Assertion
Ref Expression
cvmseu ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → ∃!𝑥𝑇 𝐴𝑥)
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝑥,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣,𝑥   𝑘,𝐽,𝑠,𝑢,𝑣,𝑥   𝑥,𝑆   𝑈,𝑘,𝑠,𝑢,𝑣,𝑥   𝑇,𝑠,𝑢,𝑣,𝑥   𝑢,𝐴,𝑣,𝑥   𝑣,𝐵,𝑥
Allowed substitution hints:   𝐴(𝑘,𝑠)   𝐵(𝑢,𝑘,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)   𝑇(𝑘)

Proof of Theorem cvmseu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpr2 1193 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝐴𝐵)
2 simpr3 1194 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → (𝐹𝐴) ∈ 𝑈)
3 cvmcn 33124 . . . . . . 7 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
43adantr 480 . . . . . 6 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝐹 ∈ (𝐶 Cn 𝐽))
5 cvmseu.1 . . . . . . 7 𝐵 = 𝐶
6 eqid 2738 . . . . . . 7 𝐽 = 𝐽
75, 6cnf 22305 . . . . . 6 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
8 ffn 6584 . . . . . 6 (𝐹:𝐵 𝐽𝐹 Fn 𝐵)
9 elpreima 6917 . . . . . 6 (𝐹 Fn 𝐵 → (𝐴 ∈ (𝐹𝑈) ↔ (𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)))
104, 7, 8, 94syl 19 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → (𝐴 ∈ (𝐹𝑈) ↔ (𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)))
111, 2, 10mpbir2and 709 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝐴 ∈ (𝐹𝑈))
12 simpr1 1192 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝑇 ∈ (𝑆𝑈))
13 cvmcov.1 . . . . . 6 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
1413cvmsuni 33131 . . . . 5 (𝑇 ∈ (𝑆𝑈) → 𝑇 = (𝐹𝑈))
1512, 14syl 17 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝑇 = (𝐹𝑈))
1611, 15eleqtrrd 2842 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝐴 𝑇)
17 eluni2 4840 . . 3 (𝐴 𝑇 ↔ ∃𝑥𝑇 𝐴𝑥)
1816, 17sylib 217 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → ∃𝑥𝑇 𝐴𝑥)
19 inelcm 4395 . . . 4 ((𝐴𝑥𝐴𝑧) → (𝑥𝑧) ≠ ∅)
2013cvmsdisj 33132 . . . . . . . 8 ((𝑇 ∈ (𝑆𝑈) ∧ 𝑥𝑇𝑧𝑇) → (𝑥 = 𝑧 ∨ (𝑥𝑧) = ∅))
21203expb 1118 . . . . . . 7 ((𝑇 ∈ (𝑆𝑈) ∧ (𝑥𝑇𝑧𝑇)) → (𝑥 = 𝑧 ∨ (𝑥𝑧) = ∅))
2212, 21sylan 579 . . . . . 6 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) ∧ (𝑥𝑇𝑧𝑇)) → (𝑥 = 𝑧 ∨ (𝑥𝑧) = ∅))
2322ord 860 . . . . 5 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) ∧ (𝑥𝑇𝑧𝑇)) → (¬ 𝑥 = 𝑧 → (𝑥𝑧) = ∅))
2423necon1ad 2959 . . . 4 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) ∧ (𝑥𝑇𝑧𝑇)) → ((𝑥𝑧) ≠ ∅ → 𝑥 = 𝑧))
2519, 24syl5 34 . . 3 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) ∧ (𝑥𝑇𝑧𝑇)) → ((𝐴𝑥𝐴𝑧) → 𝑥 = 𝑧))
2625ralrimivva 3114 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → ∀𝑥𝑇𝑧𝑇 ((𝐴𝑥𝐴𝑧) → 𝑥 = 𝑧))
27 eleq2w 2822 . . 3 (𝑥 = 𝑧 → (𝐴𝑥𝐴𝑧))
2827reu4 3661 . 2 (∃!𝑥𝑇 𝐴𝑥 ↔ (∃𝑥𝑇 𝐴𝑥 ∧ ∀𝑥𝑇𝑧𝑇 ((𝐴𝑥𝐴𝑧) → 𝑥 = 𝑧)))
2918, 26, 28sylanbrc 582 1 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → ∃!𝑥𝑇 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  ∃!wreu 3065  {crab 3067  cdif 3880  cin 3882  c0 4253  𝒫 cpw 4530  {csn 4558   cuni 4836  cmpt 5153  ccnv 5579  cres 5582  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  t crest 17048   Cn ccn 22283  Homeochmeo 22812   CovMap ccvm 33117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-top 21951  df-topon 21968  df-cn 22286  df-cvm 33118
This theorem is referenced by:  cvmsiota  33139
  Copyright terms: Public domain W3C validator