Step | Hyp | Ref
| Expression |
1 | | simpr2 1194 |
. . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → 𝐴 ∈ 𝐵) |
2 | | simpr3 1195 |
. . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → (𝐹‘𝐴) ∈ 𝑈) |
3 | | cvmcn 33224 |
. . . . . . 7
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
4 | 3 | adantr 481 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
5 | | cvmseu.1 |
. . . . . . 7
⊢ 𝐵 = ∪
𝐶 |
6 | | eqid 2738 |
. . . . . . 7
⊢ ∪ 𝐽 =
∪ 𝐽 |
7 | 5, 6 | cnf 22397 |
. . . . . 6
⊢ (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵⟶∪ 𝐽) |
8 | | ffn 6600 |
. . . . . 6
⊢ (𝐹:𝐵⟶∪ 𝐽 → 𝐹 Fn 𝐵) |
9 | | elpreima 6935 |
. . . . . 6
⊢ (𝐹 Fn 𝐵 → (𝐴 ∈ (◡𝐹 “ 𝑈) ↔ (𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈))) |
10 | 4, 7, 8, 9 | 4syl 19 |
. . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → (𝐴 ∈ (◡𝐹 “ 𝑈) ↔ (𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈))) |
11 | 1, 2, 10 | mpbir2and 710 |
. . . 4
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → 𝐴 ∈ (◡𝐹 “ 𝑈)) |
12 | | simpr1 1193 |
. . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → 𝑇 ∈ (𝑆‘𝑈)) |
13 | | cvmcov.1 |
. . . . . 6
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
14 | 13 | cvmsuni 33231 |
. . . . 5
⊢ (𝑇 ∈ (𝑆‘𝑈) → ∪ 𝑇 = (◡𝐹 “ 𝑈)) |
15 | 12, 14 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → ∪ 𝑇 = (◡𝐹 “ 𝑈)) |
16 | 11, 15 | eleqtrrd 2842 |
. . 3
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → 𝐴 ∈ ∪ 𝑇) |
17 | | eluni2 4843 |
. . 3
⊢ (𝐴 ∈ ∪ 𝑇
↔ ∃𝑥 ∈
𝑇 𝐴 ∈ 𝑥) |
18 | 16, 17 | sylib 217 |
. 2
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → ∃𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) |
19 | | inelcm 4398 |
. . . 4
⊢ ((𝐴 ∈ 𝑥 ∧ 𝐴 ∈ 𝑧) → (𝑥 ∩ 𝑧) ≠ ∅) |
20 | 13 | cvmsdisj 33232 |
. . . . . . . 8
⊢ ((𝑇 ∈ (𝑆‘𝑈) ∧ 𝑥 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) → (𝑥 = 𝑧 ∨ (𝑥 ∩ 𝑧) = ∅)) |
21 | 20 | 3expb 1119 |
. . . . . . 7
⊢ ((𝑇 ∈ (𝑆‘𝑈) ∧ (𝑥 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (𝑥 = 𝑧 ∨ (𝑥 ∩ 𝑧) = ∅)) |
22 | 12, 21 | sylan 580 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) ∧ (𝑥 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (𝑥 = 𝑧 ∨ (𝑥 ∩ 𝑧) = ∅)) |
23 | 22 | ord 861 |
. . . . 5
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) ∧ (𝑥 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (¬ 𝑥 = 𝑧 → (𝑥 ∩ 𝑧) = ∅)) |
24 | 23 | necon1ad 2960 |
. . . 4
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) ∧ (𝑥 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → ((𝑥 ∩ 𝑧) ≠ ∅ → 𝑥 = 𝑧)) |
25 | 19, 24 | syl5 34 |
. . 3
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) ∧ (𝑥 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → ((𝐴 ∈ 𝑥 ∧ 𝐴 ∈ 𝑧) → 𝑥 = 𝑧)) |
26 | 25 | ralrimivva 3123 |
. 2
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → ∀𝑥 ∈ 𝑇 ∀𝑧 ∈ 𝑇 ((𝐴 ∈ 𝑥 ∧ 𝐴 ∈ 𝑧) → 𝑥 = 𝑧)) |
27 | | eleq2w 2822 |
. . 3
⊢ (𝑥 = 𝑧 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑧)) |
28 | 27 | reu4 3666 |
. 2
⊢
(∃!𝑥 ∈
𝑇 𝐴 ∈ 𝑥 ↔ (∃𝑥 ∈ 𝑇 𝐴 ∈ 𝑥 ∧ ∀𝑥 ∈ 𝑇 ∀𝑧 ∈ 𝑇 ((𝐴 ∈ 𝑥 ∧ 𝐴 ∈ 𝑧) → 𝑥 = 𝑧))) |
29 | 18, 26, 28 | sylanbrc 583 |
1
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → ∃!𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) |