Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subgacs | Structured version Visualization version GIF version |
Description: Subgroups are an algebraic closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
subgacs.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
subgacs | ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . 6 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
2 | 1 | issubg3 18773 | . . . . 5 ⊢ (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ ∀𝑥 ∈ 𝑠 ((invg‘𝐺)‘𝑥) ∈ 𝑠))) |
3 | subgacs.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝐺) | |
4 | 3 | submss 18448 | . . . . . . . . 9 ⊢ (𝑠 ∈ (SubMnd‘𝐺) → 𝑠 ⊆ 𝐵) |
5 | 4 | adantl 482 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → 𝑠 ⊆ 𝐵) |
6 | velpw 4538 | . . . . . . . 8 ⊢ (𝑠 ∈ 𝒫 𝐵 ↔ 𝑠 ⊆ 𝐵) | |
7 | 5, 6 | sylibr 233 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → 𝑠 ∈ 𝒫 𝐵) |
8 | eleq2w 2822 | . . . . . . . . 9 ⊢ (𝑦 = 𝑠 → (((invg‘𝐺)‘𝑥) ∈ 𝑦 ↔ ((invg‘𝐺)‘𝑥) ∈ 𝑠)) | |
9 | 8 | raleqbi1dv 3340 | . . . . . . . 8 ⊢ (𝑦 = 𝑠 → (∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦 ↔ ∀𝑥 ∈ 𝑠 ((invg‘𝐺)‘𝑥) ∈ 𝑠)) |
10 | 9 | elrab3 3625 | . . . . . . 7 ⊢ (𝑠 ∈ 𝒫 𝐵 → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦} ↔ ∀𝑥 ∈ 𝑠 ((invg‘𝐺)‘𝑥) ∈ 𝑠)) |
11 | 7, 10 | syl 17 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦} ↔ ∀𝑥 ∈ 𝑠 ((invg‘𝐺)‘𝑥) ∈ 𝑠)) |
12 | 11 | pm5.32da 579 | . . . . 5 ⊢ (𝐺 ∈ Grp → ((𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ ∀𝑥 ∈ 𝑠 ((invg‘𝐺)‘𝑥) ∈ 𝑠))) |
13 | 2, 12 | bitr4d 281 | . . . 4 ⊢ (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}))) |
14 | elin 3903 | . . . 4 ⊢ (𝑠 ∈ ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦})) | |
15 | 13, 14 | bitr4di 289 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ 𝑠 ∈ ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}))) |
16 | 15 | eqrdv 2736 | . 2 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) = ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦})) |
17 | 3 | fvexi 6788 | . . . 4 ⊢ 𝐵 ∈ V |
18 | mreacs 17367 | . . . 4 ⊢ (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵)) | |
19 | 17, 18 | mp1i 13 | . . 3 ⊢ (𝐺 ∈ Grp → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵)) |
20 | grpmnd 18584 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
21 | 3 | submacs 18465 | . . . 4 ⊢ (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵)) |
22 | 20, 21 | syl 17 | . . 3 ⊢ (𝐺 ∈ Grp → (SubMnd‘𝐺) ∈ (ACS‘𝐵)) |
23 | 3, 1 | grpinvcl 18627 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
24 | 23 | ralrimiva 3103 | . . . 4 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
25 | acsfn1 17370 | . . . 4 ⊢ ((𝐵 ∈ V ∧ ∀𝑥 ∈ 𝐵 ((invg‘𝐺)‘𝑥) ∈ 𝐵) → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵)) | |
26 | 17, 24, 25 | sylancr 587 | . . 3 ⊢ (𝐺 ∈ Grp → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵)) |
27 | mreincl 17308 | . . 3 ⊢ (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ (SubMnd‘𝐺) ∈ (ACS‘𝐵) ∧ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵)) → ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}) ∈ (ACS‘𝐵)) | |
28 | 19, 22, 26, 27 | syl3anc 1370 | . 2 ⊢ (𝐺 ∈ Grp → ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}) ∈ (ACS‘𝐵)) |
29 | 16, 28 | eqeltrd 2839 | 1 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 ‘cfv 6433 Basecbs 16912 Moorecmre 17291 ACScacs 17294 Mndcmnd 18385 SubMndcsubmnd 18429 Grpcgrp 18577 invgcminusg 18578 SubGrpcsubg 18749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-0g 17152 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-grp 18580 df-minusg 18581 df-subg 18752 |
This theorem is referenced by: nsgacs 18790 cycsubg2 18829 cycsubg2cl 18830 odf1o1 19177 lsmmod 19281 dmdprdd 19602 dprdfeq0 19625 dprdspan 19630 dprdres 19631 dprdss 19632 dprdz 19633 subgdmdprd 19637 subgdprd 19638 dprdsn 19639 dprd2dlem1 19644 dprd2da 19645 dmdprdsplit2lem 19648 ablfac1b 19673 pgpfac1lem1 19677 pgpfac1lem2 19678 pgpfac1lem3a 19679 pgpfac1lem3 19680 pgpfac1lem4 19681 pgpfac1lem5 19682 pgpfaclem1 19684 pgpfaclem2 19685 subrgacs 20068 lssacs 20229 proot1mul 41024 proot1hash 41025 |
Copyright terms: Public domain | W3C validator |