| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgacs | Structured version Visualization version GIF version | ||
| Description: Subgroups are an algebraic closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| subgacs.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| subgacs | ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . . . 6 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 2 | 1 | issubg3 19083 | . . . . 5 ⊢ (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ ∀𝑥 ∈ 𝑠 ((invg‘𝐺)‘𝑥) ∈ 𝑠))) |
| 3 | subgacs.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | 3 | submss 18743 | . . . . . . . . 9 ⊢ (𝑠 ∈ (SubMnd‘𝐺) → 𝑠 ⊆ 𝐵) |
| 5 | 4 | adantl 481 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → 𝑠 ⊆ 𝐵) |
| 6 | velpw 4571 | . . . . . . . 8 ⊢ (𝑠 ∈ 𝒫 𝐵 ↔ 𝑠 ⊆ 𝐵) | |
| 7 | 5, 6 | sylibr 234 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → 𝑠 ∈ 𝒫 𝐵) |
| 8 | eleq2w 2813 | . . . . . . . . 9 ⊢ (𝑦 = 𝑠 → (((invg‘𝐺)‘𝑥) ∈ 𝑦 ↔ ((invg‘𝐺)‘𝑥) ∈ 𝑠)) | |
| 9 | 8 | raleqbi1dv 3313 | . . . . . . . 8 ⊢ (𝑦 = 𝑠 → (∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦 ↔ ∀𝑥 ∈ 𝑠 ((invg‘𝐺)‘𝑥) ∈ 𝑠)) |
| 10 | 9 | elrab3 3663 | . . . . . . 7 ⊢ (𝑠 ∈ 𝒫 𝐵 → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦} ↔ ∀𝑥 ∈ 𝑠 ((invg‘𝐺)‘𝑥) ∈ 𝑠)) |
| 11 | 7, 10 | syl 17 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦} ↔ ∀𝑥 ∈ 𝑠 ((invg‘𝐺)‘𝑥) ∈ 𝑠)) |
| 12 | 11 | pm5.32da 579 | . . . . 5 ⊢ (𝐺 ∈ Grp → ((𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ ∀𝑥 ∈ 𝑠 ((invg‘𝐺)‘𝑥) ∈ 𝑠))) |
| 13 | 2, 12 | bitr4d 282 | . . . 4 ⊢ (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}))) |
| 14 | elin 3933 | . . . 4 ⊢ (𝑠 ∈ ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦})) | |
| 15 | 13, 14 | bitr4di 289 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ 𝑠 ∈ ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}))) |
| 16 | 15 | eqrdv 2728 | . 2 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) = ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦})) |
| 17 | 3 | fvexi 6875 | . . . 4 ⊢ 𝐵 ∈ V |
| 18 | mreacs 17626 | . . . 4 ⊢ (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵)) | |
| 19 | 17, 18 | mp1i 13 | . . 3 ⊢ (𝐺 ∈ Grp → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵)) |
| 20 | grpmnd 18879 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 21 | 3 | submacs 18761 | . . . 4 ⊢ (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵)) |
| 22 | 20, 21 | syl 17 | . . 3 ⊢ (𝐺 ∈ Grp → (SubMnd‘𝐺) ∈ (ACS‘𝐵)) |
| 23 | 3, 1 | grpinvcl 18926 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
| 24 | 23 | ralrimiva 3126 | . . . 4 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
| 25 | acsfn1 17629 | . . . 4 ⊢ ((𝐵 ∈ V ∧ ∀𝑥 ∈ 𝐵 ((invg‘𝐺)‘𝑥) ∈ 𝐵) → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵)) | |
| 26 | 17, 24, 25 | sylancr 587 | . . 3 ⊢ (𝐺 ∈ Grp → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵)) |
| 27 | mreincl 17567 | . . 3 ⊢ (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ (SubMnd‘𝐺) ∈ (ACS‘𝐵) ∧ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵)) → ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}) ∈ (ACS‘𝐵)) | |
| 28 | 19, 22, 26, 27 | syl3anc 1373 | . 2 ⊢ (𝐺 ∈ Grp → ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}) ∈ (ACS‘𝐵)) |
| 29 | 16, 28 | eqeltrd 2829 | 1 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 𝒫 cpw 4566 ‘cfv 6514 Basecbs 17186 Moorecmre 17550 ACScacs 17553 Mndcmnd 18668 SubMndcsubmnd 18716 Grpcgrp 18872 invgcminusg 18873 SubGrpcsubg 19059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-0g 17411 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-minusg 18876 df-subg 19062 |
| This theorem is referenced by: nsgacs 19101 cycsubg2 19149 cycsubg2cl 19150 odf1o1 19509 lsmmod 19612 dmdprdd 19938 dprdfeq0 19961 dprdspan 19966 dprdres 19967 dprdss 19968 dprdz 19969 subgdmdprd 19973 subgdprd 19974 dprdsn 19975 dprd2dlem1 19980 dprd2da 19981 dmdprdsplit2lem 19984 ablfac1b 20009 pgpfac1lem1 20013 pgpfac1lem2 20014 pgpfac1lem3a 20015 pgpfac1lem3 20016 pgpfac1lem4 20017 pgpfac1lem5 20018 pgpfaclem1 20020 pgpfaclem2 20021 subrgacs 20716 lssacs 20880 proot1mul 43190 proot1hash 43191 |
| Copyright terms: Public domain | W3C validator |