MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgacs Structured version   Visualization version   GIF version

Theorem subgacs 18313
Description: Subgroups are an algebraic closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
subgacs.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
subgacs (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))

Proof of Theorem subgacs
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . . . 6 (invg𝐺) = (invg𝐺)
21issubg3 18297 . . . . 5 (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑠 ((invg𝐺)‘𝑥) ∈ 𝑠)))
3 subgacs.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
43submss 17974 . . . . . . . . 9 (𝑠 ∈ (SubMnd‘𝐺) → 𝑠𝐵)
54adantl 484 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → 𝑠𝐵)
6 velpw 4544 . . . . . . . 8 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
75, 6sylibr 236 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → 𝑠 ∈ 𝒫 𝐵)
8 eleq2w 2896 . . . . . . . . 9 (𝑦 = 𝑠 → (((invg𝐺)‘𝑥) ∈ 𝑦 ↔ ((invg𝐺)‘𝑥) ∈ 𝑠))
98raleqbi1dv 3403 . . . . . . . 8 (𝑦 = 𝑠 → (∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦 ↔ ∀𝑥𝑠 ((invg𝐺)‘𝑥) ∈ 𝑠))
109elrab3 3681 . . . . . . 7 (𝑠 ∈ 𝒫 𝐵 → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦} ↔ ∀𝑥𝑠 ((invg𝐺)‘𝑥) ∈ 𝑠))
117, 10syl 17 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦} ↔ ∀𝑥𝑠 ((invg𝐺)‘𝑥) ∈ 𝑠))
1211pm5.32da 581 . . . . 5 (𝐺 ∈ Grp → ((𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦}) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑠 ((invg𝐺)‘𝑥) ∈ 𝑠)))
132, 12bitr4d 284 . . . 4 (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦})))
14 elin 4169 . . . 4 (𝑠 ∈ ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦}) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦}))
1513, 14syl6bbr 291 . . 3 (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ 𝑠 ∈ ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦})))
1615eqrdv 2819 . 2 (𝐺 ∈ Grp → (SubGrp‘𝐺) = ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦}))
173fvexi 6684 . . . 4 𝐵 ∈ V
18 mreacs 16929 . . . 4 (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
1917, 18mp1i 13 . . 3 (𝐺 ∈ Grp → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
20 grpmnd 18110 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
213submacs 17991 . . . 4 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
2220, 21syl 17 . . 3 (𝐺 ∈ Grp → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
233, 1grpinvcl 18151 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
2423ralrimiva 3182 . . . 4 (𝐺 ∈ Grp → ∀𝑥𝐵 ((invg𝐺)‘𝑥) ∈ 𝐵)
25 acsfn1 16932 . . . 4 ((𝐵 ∈ V ∧ ∀𝑥𝐵 ((invg𝐺)‘𝑥) ∈ 𝐵) → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵))
2617, 24, 25sylancr 589 . . 3 (𝐺 ∈ Grp → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵))
27 mreincl 16870 . . 3 (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ (SubMnd‘𝐺) ∈ (ACS‘𝐵) ∧ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵)) → ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦}) ∈ (ACS‘𝐵))
2819, 22, 26, 27syl3anc 1367 . 2 (𝐺 ∈ Grp → ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦}) ∈ (ACS‘𝐵))
2916, 28eqeltrd 2913 1 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  {crab 3142  Vcvv 3494  cin 3935  wss 3936  𝒫 cpw 4539  cfv 6355  Basecbs 16483  Moorecmre 16853  ACScacs 16856  Mndcmnd 17911  SubMndcsubmnd 17955  Grpcgrp 18103  invgcminusg 18104  SubGrpcsubg 18273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-0g 16715  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-grp 18106  df-minusg 18107  df-subg 18276
This theorem is referenced by:  nsgacs  18314  cycsubg2  18353  cycsubg2cl  18354  odf1o1  18697  lsmmod  18801  dmdprdd  19121  dprdfeq0  19144  dprdspan  19149  dprdres  19150  dprdss  19151  dprdz  19152  subgdmdprd  19156  subgdprd  19157  dprdsn  19158  dprd2dlem1  19163  dprd2da  19164  dmdprdsplit2lem  19167  ablfac1b  19192  pgpfac1lem1  19196  pgpfac1lem2  19197  pgpfac1lem3a  19198  pgpfac1lem3  19199  pgpfac1lem4  19200  pgpfac1lem5  19201  pgpfaclem1  19203  pgpfaclem2  19204  subrgacs  19579  lssacs  19739  proot1mul  39819  proot1hash  39820
  Copyright terms: Public domain W3C validator