MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgacs Structured version   Visualization version   GIF version

Theorem subgacs 19107
Description: Subgroups are an algebraic closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
subgacs.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
subgacs (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))

Proof of Theorem subgacs
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2727 . . . . . 6 (invg𝐺) = (invg𝐺)
21issubg3 19090 . . . . 5 (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑠 ((invg𝐺)‘𝑥) ∈ 𝑠)))
3 subgacs.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
43submss 18752 . . . . . . . . 9 (𝑠 ∈ (SubMnd‘𝐺) → 𝑠𝐵)
54adantl 481 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → 𝑠𝐵)
6 velpw 4603 . . . . . . . 8 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
75, 6sylibr 233 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → 𝑠 ∈ 𝒫 𝐵)
8 eleq2w 2812 . . . . . . . . 9 (𝑦 = 𝑠 → (((invg𝐺)‘𝑥) ∈ 𝑦 ↔ ((invg𝐺)‘𝑥) ∈ 𝑠))
98raleqbi1dv 3328 . . . . . . . 8 (𝑦 = 𝑠 → (∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦 ↔ ∀𝑥𝑠 ((invg𝐺)‘𝑥) ∈ 𝑠))
109elrab3 3681 . . . . . . 7 (𝑠 ∈ 𝒫 𝐵 → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦} ↔ ∀𝑥𝑠 ((invg𝐺)‘𝑥) ∈ 𝑠))
117, 10syl 17 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦} ↔ ∀𝑥𝑠 ((invg𝐺)‘𝑥) ∈ 𝑠))
1211pm5.32da 578 . . . . 5 (𝐺 ∈ Grp → ((𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦}) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑠 ((invg𝐺)‘𝑥) ∈ 𝑠)))
132, 12bitr4d 282 . . . 4 (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦})))
14 elin 3960 . . . 4 (𝑠 ∈ ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦}) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦}))
1513, 14bitr4di 289 . . 3 (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ 𝑠 ∈ ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦})))
1615eqrdv 2725 . 2 (𝐺 ∈ Grp → (SubGrp‘𝐺) = ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦}))
173fvexi 6905 . . . 4 𝐵 ∈ V
18 mreacs 17629 . . . 4 (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
1917, 18mp1i 13 . . 3 (𝐺 ∈ Grp → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
20 grpmnd 18888 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
213submacs 18770 . . . 4 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
2220, 21syl 17 . . 3 (𝐺 ∈ Grp → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
233, 1grpinvcl 18935 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
2423ralrimiva 3141 . . . 4 (𝐺 ∈ Grp → ∀𝑥𝐵 ((invg𝐺)‘𝑥) ∈ 𝐵)
25 acsfn1 17632 . . . 4 ((𝐵 ∈ V ∧ ∀𝑥𝐵 ((invg𝐺)‘𝑥) ∈ 𝐵) → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵))
2617, 24, 25sylancr 586 . . 3 (𝐺 ∈ Grp → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵))
27 mreincl 17570 . . 3 (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ (SubMnd‘𝐺) ∈ (ACS‘𝐵) ∧ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵)) → ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦}) ∈ (ACS‘𝐵))
2819, 22, 26, 27syl3anc 1369 . 2 (𝐺 ∈ Grp → ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦}) ∈ (ACS‘𝐵))
2916, 28eqeltrd 2828 1 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wral 3056  {crab 3427  Vcvv 3469  cin 3943  wss 3944  𝒫 cpw 4598  cfv 6542  Basecbs 17171  Moorecmre 17553  ACScacs 17556  Mndcmnd 18685  SubMndcsubmnd 18730  Grpcgrp 18881  invgcminusg 18882  SubGrpcsubg 19066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-0g 17414  df-mre 17557  df-mrc 17558  df-acs 17560  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-submnd 18732  df-grp 18884  df-minusg 18885  df-subg 19069
This theorem is referenced by:  nsgacs  19108  cycsubg2  19156  cycsubg2cl  19157  odf1o1  19518  lsmmod  19621  dmdprdd  19947  dprdfeq0  19970  dprdspan  19975  dprdres  19976  dprdss  19977  dprdz  19978  subgdmdprd  19982  subgdprd  19983  dprdsn  19984  dprd2dlem1  19989  dprd2da  19990  dmdprdsplit2lem  19993  ablfac1b  20018  pgpfac1lem1  20022  pgpfac1lem2  20023  pgpfac1lem3a  20024  pgpfac1lem3  20025  pgpfac1lem4  20026  pgpfac1lem5  20027  pgpfaclem1  20029  pgpfaclem2  20030  subrgacs  20677  lssacs  20840  proot1mul  42544  proot1hash  42545
  Copyright terms: Public domain W3C validator