![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgacs | Structured version Visualization version GIF version |
Description: Subgroups are an algebraic closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
subgacs.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
subgacs | ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . . . 6 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
2 | 1 | issubg3 19175 | . . . . 5 ⊢ (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ ∀𝑥 ∈ 𝑠 ((invg‘𝐺)‘𝑥) ∈ 𝑠))) |
3 | subgacs.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝐺) | |
4 | 3 | submss 18835 | . . . . . . . . 9 ⊢ (𝑠 ∈ (SubMnd‘𝐺) → 𝑠 ⊆ 𝐵) |
5 | 4 | adantl 481 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → 𝑠 ⊆ 𝐵) |
6 | velpw 4610 | . . . . . . . 8 ⊢ (𝑠 ∈ 𝒫 𝐵 ↔ 𝑠 ⊆ 𝐵) | |
7 | 5, 6 | sylibr 234 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → 𝑠 ∈ 𝒫 𝐵) |
8 | eleq2w 2823 | . . . . . . . . 9 ⊢ (𝑦 = 𝑠 → (((invg‘𝐺)‘𝑥) ∈ 𝑦 ↔ ((invg‘𝐺)‘𝑥) ∈ 𝑠)) | |
9 | 8 | raleqbi1dv 3336 | . . . . . . . 8 ⊢ (𝑦 = 𝑠 → (∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦 ↔ ∀𝑥 ∈ 𝑠 ((invg‘𝐺)‘𝑥) ∈ 𝑠)) |
10 | 9 | elrab3 3696 | . . . . . . 7 ⊢ (𝑠 ∈ 𝒫 𝐵 → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦} ↔ ∀𝑥 ∈ 𝑠 ((invg‘𝐺)‘𝑥) ∈ 𝑠)) |
11 | 7, 10 | syl 17 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦} ↔ ∀𝑥 ∈ 𝑠 ((invg‘𝐺)‘𝑥) ∈ 𝑠)) |
12 | 11 | pm5.32da 579 | . . . . 5 ⊢ (𝐺 ∈ Grp → ((𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ ∀𝑥 ∈ 𝑠 ((invg‘𝐺)‘𝑥) ∈ 𝑠))) |
13 | 2, 12 | bitr4d 282 | . . . 4 ⊢ (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}))) |
14 | elin 3979 | . . . 4 ⊢ (𝑠 ∈ ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦})) | |
15 | 13, 14 | bitr4di 289 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ 𝑠 ∈ ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}))) |
16 | 15 | eqrdv 2733 | . 2 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) = ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦})) |
17 | 3 | fvexi 6921 | . . . 4 ⊢ 𝐵 ∈ V |
18 | mreacs 17703 | . . . 4 ⊢ (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵)) | |
19 | 17, 18 | mp1i 13 | . . 3 ⊢ (𝐺 ∈ Grp → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵)) |
20 | grpmnd 18971 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
21 | 3 | submacs 18853 | . . . 4 ⊢ (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵)) |
22 | 20, 21 | syl 17 | . . 3 ⊢ (𝐺 ∈ Grp → (SubMnd‘𝐺) ∈ (ACS‘𝐵)) |
23 | 3, 1 | grpinvcl 19018 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
24 | 23 | ralrimiva 3144 | . . . 4 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
25 | acsfn1 17706 | . . . 4 ⊢ ((𝐵 ∈ V ∧ ∀𝑥 ∈ 𝐵 ((invg‘𝐺)‘𝑥) ∈ 𝐵) → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵)) | |
26 | 17, 24, 25 | sylancr 587 | . . 3 ⊢ (𝐺 ∈ Grp → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵)) |
27 | mreincl 17644 | . . 3 ⊢ (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ (SubMnd‘𝐺) ∈ (ACS‘𝐵) ∧ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵)) → ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}) ∈ (ACS‘𝐵)) | |
28 | 19, 22, 26, 27 | syl3anc 1370 | . 2 ⊢ (𝐺 ∈ Grp → ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}) ∈ (ACS‘𝐵)) |
29 | 16, 28 | eqeltrd 2839 | 1 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 {crab 3433 Vcvv 3478 ∩ cin 3962 ⊆ wss 3963 𝒫 cpw 4605 ‘cfv 6563 Basecbs 17245 Moorecmre 17627 ACScacs 17630 Mndcmnd 18760 SubMndcsubmnd 18808 Grpcgrp 18964 invgcminusg 18965 SubGrpcsubg 19151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-0g 17488 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-grp 18967 df-minusg 18968 df-subg 19154 |
This theorem is referenced by: nsgacs 19193 cycsubg2 19241 cycsubg2cl 19242 odf1o1 19605 lsmmod 19708 dmdprdd 20034 dprdfeq0 20057 dprdspan 20062 dprdres 20063 dprdss 20064 dprdz 20065 subgdmdprd 20069 subgdprd 20070 dprdsn 20071 dprd2dlem1 20076 dprd2da 20077 dmdprdsplit2lem 20080 ablfac1b 20105 pgpfac1lem1 20109 pgpfac1lem2 20110 pgpfac1lem3a 20111 pgpfac1lem3 20112 pgpfac1lem4 20113 pgpfac1lem5 20114 pgpfaclem1 20116 pgpfaclem2 20117 subrgacs 20818 lssacs 20983 proot1mul 43183 proot1hash 43184 |
Copyright terms: Public domain | W3C validator |