![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgacs | Structured version Visualization version GIF version |
Description: Subgroups are an algebraic closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
subgacs.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
subgacs | ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . . . 6 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
2 | 1 | issubg3 18946 | . . . . 5 ⊢ (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ ∀𝑥 ∈ 𝑠 ((invg‘𝐺)‘𝑥) ∈ 𝑠))) |
3 | subgacs.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝐺) | |
4 | 3 | submss 18620 | . . . . . . . . 9 ⊢ (𝑠 ∈ (SubMnd‘𝐺) → 𝑠 ⊆ 𝐵) |
5 | 4 | adantl 482 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → 𝑠 ⊆ 𝐵) |
6 | velpw 4565 | . . . . . . . 8 ⊢ (𝑠 ∈ 𝒫 𝐵 ↔ 𝑠 ⊆ 𝐵) | |
7 | 5, 6 | sylibr 233 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → 𝑠 ∈ 𝒫 𝐵) |
8 | eleq2w 2821 | . . . . . . . . 9 ⊢ (𝑦 = 𝑠 → (((invg‘𝐺)‘𝑥) ∈ 𝑦 ↔ ((invg‘𝐺)‘𝑥) ∈ 𝑠)) | |
9 | 8 | raleqbi1dv 3307 | . . . . . . . 8 ⊢ (𝑦 = 𝑠 → (∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦 ↔ ∀𝑥 ∈ 𝑠 ((invg‘𝐺)‘𝑥) ∈ 𝑠)) |
10 | 9 | elrab3 3646 | . . . . . . 7 ⊢ (𝑠 ∈ 𝒫 𝐵 → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦} ↔ ∀𝑥 ∈ 𝑠 ((invg‘𝐺)‘𝑥) ∈ 𝑠)) |
11 | 7, 10 | syl 17 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦} ↔ ∀𝑥 ∈ 𝑠 ((invg‘𝐺)‘𝑥) ∈ 𝑠)) |
12 | 11 | pm5.32da 579 | . . . . 5 ⊢ (𝐺 ∈ Grp → ((𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ ∀𝑥 ∈ 𝑠 ((invg‘𝐺)‘𝑥) ∈ 𝑠))) |
13 | 2, 12 | bitr4d 281 | . . . 4 ⊢ (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}))) |
14 | elin 3926 | . . . 4 ⊢ (𝑠 ∈ ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦})) | |
15 | 13, 14 | bitr4di 288 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ 𝑠 ∈ ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}))) |
16 | 15 | eqrdv 2734 | . 2 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) = ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦})) |
17 | 3 | fvexi 6856 | . . . 4 ⊢ 𝐵 ∈ V |
18 | mreacs 17538 | . . . 4 ⊢ (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵)) | |
19 | 17, 18 | mp1i 13 | . . 3 ⊢ (𝐺 ∈ Grp → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵)) |
20 | grpmnd 18755 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
21 | 3 | submacs 18637 | . . . 4 ⊢ (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵)) |
22 | 20, 21 | syl 17 | . . 3 ⊢ (𝐺 ∈ Grp → (SubMnd‘𝐺) ∈ (ACS‘𝐵)) |
23 | 3, 1 | grpinvcl 18798 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
24 | 23 | ralrimiva 3143 | . . . 4 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
25 | acsfn1 17541 | . . . 4 ⊢ ((𝐵 ∈ V ∧ ∀𝑥 ∈ 𝐵 ((invg‘𝐺)‘𝑥) ∈ 𝐵) → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵)) | |
26 | 17, 24, 25 | sylancr 587 | . . 3 ⊢ (𝐺 ∈ Grp → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵)) |
27 | mreincl 17479 | . . 3 ⊢ (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ (SubMnd‘𝐺) ∈ (ACS‘𝐵) ∧ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵)) → ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}) ∈ (ACS‘𝐵)) | |
28 | 19, 22, 26, 27 | syl3anc 1371 | . 2 ⊢ (𝐺 ∈ Grp → ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}) ∈ (ACS‘𝐵)) |
29 | 16, 28 | eqeltrd 2838 | 1 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3064 {crab 3407 Vcvv 3445 ∩ cin 3909 ⊆ wss 3910 𝒫 cpw 4560 ‘cfv 6496 Basecbs 17083 Moorecmre 17462 ACScacs 17465 Mndcmnd 18556 SubMndcsubmnd 18600 Grpcgrp 18748 invgcminusg 18749 SubGrpcsubg 18922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-0g 17323 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-grp 18751 df-minusg 18752 df-subg 18925 |
This theorem is referenced by: nsgacs 18964 cycsubg2 19003 cycsubg2cl 19004 odf1o1 19354 lsmmod 19457 dmdprdd 19778 dprdfeq0 19801 dprdspan 19806 dprdres 19807 dprdss 19808 dprdz 19809 subgdmdprd 19813 subgdprd 19814 dprdsn 19815 dprd2dlem1 19820 dprd2da 19821 dmdprdsplit2lem 19824 ablfac1b 19849 pgpfac1lem1 19853 pgpfac1lem2 19854 pgpfac1lem3a 19855 pgpfac1lem3 19856 pgpfac1lem4 19857 pgpfac1lem5 19858 pgpfaclem1 19860 pgpfaclem2 19861 subrgacs 20267 lssacs 20428 proot1mul 41512 proot1hash 41513 |
Copyright terms: Public domain | W3C validator |