![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgacs | Structured version Visualization version GIF version |
Description: Subgroups are an algebraic closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
subgacs.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
subgacs | ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . . . . . 6 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
2 | 1 | issubg3 19090 | . . . . 5 ⊢ (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ ∀𝑥 ∈ 𝑠 ((invg‘𝐺)‘𝑥) ∈ 𝑠))) |
3 | subgacs.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝐺) | |
4 | 3 | submss 18752 | . . . . . . . . 9 ⊢ (𝑠 ∈ (SubMnd‘𝐺) → 𝑠 ⊆ 𝐵) |
5 | 4 | adantl 481 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → 𝑠 ⊆ 𝐵) |
6 | velpw 4603 | . . . . . . . 8 ⊢ (𝑠 ∈ 𝒫 𝐵 ↔ 𝑠 ⊆ 𝐵) | |
7 | 5, 6 | sylibr 233 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → 𝑠 ∈ 𝒫 𝐵) |
8 | eleq2w 2812 | . . . . . . . . 9 ⊢ (𝑦 = 𝑠 → (((invg‘𝐺)‘𝑥) ∈ 𝑦 ↔ ((invg‘𝐺)‘𝑥) ∈ 𝑠)) | |
9 | 8 | raleqbi1dv 3328 | . . . . . . . 8 ⊢ (𝑦 = 𝑠 → (∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦 ↔ ∀𝑥 ∈ 𝑠 ((invg‘𝐺)‘𝑥) ∈ 𝑠)) |
10 | 9 | elrab3 3681 | . . . . . . 7 ⊢ (𝑠 ∈ 𝒫 𝐵 → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦} ↔ ∀𝑥 ∈ 𝑠 ((invg‘𝐺)‘𝑥) ∈ 𝑠)) |
11 | 7, 10 | syl 17 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦} ↔ ∀𝑥 ∈ 𝑠 ((invg‘𝐺)‘𝑥) ∈ 𝑠)) |
12 | 11 | pm5.32da 578 | . . . . 5 ⊢ (𝐺 ∈ Grp → ((𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ ∀𝑥 ∈ 𝑠 ((invg‘𝐺)‘𝑥) ∈ 𝑠))) |
13 | 2, 12 | bitr4d 282 | . . . 4 ⊢ (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}))) |
14 | elin 3960 | . . . 4 ⊢ (𝑠 ∈ ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦})) | |
15 | 13, 14 | bitr4di 289 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ 𝑠 ∈ ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}))) |
16 | 15 | eqrdv 2725 | . 2 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) = ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦})) |
17 | 3 | fvexi 6905 | . . . 4 ⊢ 𝐵 ∈ V |
18 | mreacs 17629 | . . . 4 ⊢ (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵)) | |
19 | 17, 18 | mp1i 13 | . . 3 ⊢ (𝐺 ∈ Grp → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵)) |
20 | grpmnd 18888 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
21 | 3 | submacs 18770 | . . . 4 ⊢ (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵)) |
22 | 20, 21 | syl 17 | . . 3 ⊢ (𝐺 ∈ Grp → (SubMnd‘𝐺) ∈ (ACS‘𝐵)) |
23 | 3, 1 | grpinvcl 18935 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
24 | 23 | ralrimiva 3141 | . . . 4 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
25 | acsfn1 17632 | . . . 4 ⊢ ((𝐵 ∈ V ∧ ∀𝑥 ∈ 𝐵 ((invg‘𝐺)‘𝑥) ∈ 𝐵) → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵)) | |
26 | 17, 24, 25 | sylancr 586 | . . 3 ⊢ (𝐺 ∈ Grp → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵)) |
27 | mreincl 17570 | . . 3 ⊢ (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ (SubMnd‘𝐺) ∈ (ACS‘𝐵) ∧ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵)) → ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}) ∈ (ACS‘𝐵)) | |
28 | 19, 22, 26, 27 | syl3anc 1369 | . 2 ⊢ (𝐺 ∈ Grp → ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑦 ((invg‘𝐺)‘𝑥) ∈ 𝑦}) ∈ (ACS‘𝐵)) |
29 | 16, 28 | eqeltrd 2828 | 1 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3056 {crab 3427 Vcvv 3469 ∩ cin 3943 ⊆ wss 3944 𝒫 cpw 4598 ‘cfv 6542 Basecbs 17171 Moorecmre 17553 ACScacs 17556 Mndcmnd 18685 SubMndcsubmnd 18730 Grpcgrp 18881 invgcminusg 18882 SubGrpcsubg 19066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-0g 17414 df-mre 17557 df-mrc 17558 df-acs 17560 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-submnd 18732 df-grp 18884 df-minusg 18885 df-subg 19069 |
This theorem is referenced by: nsgacs 19108 cycsubg2 19156 cycsubg2cl 19157 odf1o1 19518 lsmmod 19621 dmdprdd 19947 dprdfeq0 19970 dprdspan 19975 dprdres 19976 dprdss 19977 dprdz 19978 subgdmdprd 19982 subgdprd 19983 dprdsn 19984 dprd2dlem1 19989 dprd2da 19990 dmdprdsplit2lem 19993 ablfac1b 20018 pgpfac1lem1 20022 pgpfac1lem2 20023 pgpfac1lem3a 20024 pgpfac1lem3 20025 pgpfac1lem4 20026 pgpfac1lem5 20027 pgpfaclem1 20029 pgpfaclem2 20030 subrgacs 20677 lssacs 20840 proot1mul 42544 proot1hash 42545 |
Copyright terms: Public domain | W3C validator |