MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wilth Structured version   Visualization version   GIF version

Theorem wilth 25011
Description: Wilson's theorem. A number is prime iff it is greater or equal to 2 and (𝑁 − 1)! is congruent to -1, mod 𝑁, or alternatively if 𝑁 divides (𝑁 − 1)! + 1. In this part of the proof we show the relatively simple reverse implication; see wilthlem3 25010 for the forward implication. This is Metamath 100 proof #51. (Contributed by Mario Carneiro, 24-Jan-2015.) (Proof shortened by Fan Zheng, 16-Jun-2016.)
Assertion
Ref Expression
wilth (𝑁 ∈ ℙ ↔ (𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)))

Proof of Theorem wilth
Dummy variables 𝑥 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmuz2 15608 . . 3 (𝑁 ∈ ℙ → 𝑁 ∈ (ℤ‘2))
2 eqid 2771 . . . 4 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
3 eleq2w 2834 . . . . . 6 (𝑧 = 𝑥 → ((𝑁 − 1) ∈ 𝑧 ↔ (𝑁 − 1) ∈ 𝑥))
4 oveq1 6798 . . . . . . . . . 10 (𝑛 = 𝑦 → (𝑛↑(𝑁 − 2)) = (𝑦↑(𝑁 − 2)))
54oveq1d 6806 . . . . . . . . 9 (𝑛 = 𝑦 → ((𝑛↑(𝑁 − 2)) mod 𝑁) = ((𝑦↑(𝑁 − 2)) mod 𝑁))
65eleq1d 2835 . . . . . . . 8 (𝑛 = 𝑦 → (((𝑛↑(𝑁 − 2)) mod 𝑁) ∈ 𝑧 ↔ ((𝑦↑(𝑁 − 2)) mod 𝑁) ∈ 𝑧))
76cbvralv 3320 . . . . . . 7 (∀𝑛𝑧 ((𝑛↑(𝑁 − 2)) mod 𝑁) ∈ 𝑧 ↔ ∀𝑦𝑧 ((𝑦↑(𝑁 − 2)) mod 𝑁) ∈ 𝑧)
8 eleq2w 2834 . . . . . . . 8 (𝑧 = 𝑥 → (((𝑦↑(𝑁 − 2)) mod 𝑁) ∈ 𝑧 ↔ ((𝑦↑(𝑁 − 2)) mod 𝑁) ∈ 𝑥))
98raleqbi1dv 3295 . . . . . . 7 (𝑧 = 𝑥 → (∀𝑦𝑧 ((𝑦↑(𝑁 − 2)) mod 𝑁) ∈ 𝑧 ↔ ∀𝑦𝑥 ((𝑦↑(𝑁 − 2)) mod 𝑁) ∈ 𝑥))
107, 9syl5bb 272 . . . . . 6 (𝑧 = 𝑥 → (∀𝑛𝑧 ((𝑛↑(𝑁 − 2)) mod 𝑁) ∈ 𝑧 ↔ ∀𝑦𝑥 ((𝑦↑(𝑁 − 2)) mod 𝑁) ∈ 𝑥))
113, 10anbi12d 616 . . . . 5 (𝑧 = 𝑥 → (((𝑁 − 1) ∈ 𝑧 ∧ ∀𝑛𝑧 ((𝑛↑(𝑁 − 2)) mod 𝑁) ∈ 𝑧) ↔ ((𝑁 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑁 − 2)) mod 𝑁) ∈ 𝑥)))
1211cbvrabv 3349 . . . 4 {𝑧 ∈ 𝒫 (1...(𝑁 − 1)) ∣ ((𝑁 − 1) ∈ 𝑧 ∧ ∀𝑛𝑧 ((𝑛↑(𝑁 − 2)) mod 𝑁) ∈ 𝑧)} = {𝑥 ∈ 𝒫 (1...(𝑁 − 1)) ∣ ((𝑁 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑁 − 2)) mod 𝑁) ∈ 𝑥)}
132, 12wilthlem3 25010 . . 3 (𝑁 ∈ ℙ → 𝑁 ∥ ((!‘(𝑁 − 1)) + 1))
141, 13jca 501 . 2 (𝑁 ∈ ℙ → (𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)))
15 simpl 468 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) → 𝑁 ∈ (ℤ‘2))
16 elfzuz 12538 . . . . . . . . 9 (𝑛 ∈ (2...(𝑁 − 1)) → 𝑛 ∈ (ℤ‘2))
1716adantl 467 . . . . . . . 8 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → 𝑛 ∈ (ℤ‘2))
18 eluz2nn 11926 . . . . . . . 8 (𝑛 ∈ (ℤ‘2) → 𝑛 ∈ ℕ)
1917, 18syl 17 . . . . . . 7 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → 𝑛 ∈ ℕ)
20 elfzuz3 12539 . . . . . . . 8 (𝑛 ∈ (2...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ𝑛))
2120adantl 467 . . . . . . 7 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → (𝑁 − 1) ∈ (ℤ𝑛))
22 dvdsfac 15250 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (𝑁 − 1) ∈ (ℤ𝑛)) → 𝑛 ∥ (!‘(𝑁 − 1)))
2319, 21, 22syl2anc 573 . . . . . 6 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → 𝑛 ∥ (!‘(𝑁 − 1)))
24 eluz2nn 11926 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2524ad2antrr 705 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ ℕ)
26 nnm1nn0 11534 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
27 faccl 13267 . . . . . . . . 9 ((𝑁 − 1) ∈ ℕ0 → (!‘(𝑁 − 1)) ∈ ℕ)
2825, 26, 273syl 18 . . . . . . . 8 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → (!‘(𝑁 − 1)) ∈ ℕ)
2928nnzd 11681 . . . . . . 7 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → (!‘(𝑁 − 1)) ∈ ℤ)
30 eluz2b2 11962 . . . . . . . . 9 (𝑛 ∈ (ℤ‘2) ↔ (𝑛 ∈ ℕ ∧ 1 < 𝑛))
3130simprbi 484 . . . . . . . 8 (𝑛 ∈ (ℤ‘2) → 1 < 𝑛)
3217, 31syl 17 . . . . . . 7 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → 1 < 𝑛)
33 ndvdsp1 15336 . . . . . . 7 (((!‘(𝑁 − 1)) ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 1 < 𝑛) → (𝑛 ∥ (!‘(𝑁 − 1)) → ¬ 𝑛 ∥ ((!‘(𝑁 − 1)) + 1)))
3429, 19, 32, 33syl3anc 1476 . . . . . 6 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → (𝑛 ∥ (!‘(𝑁 − 1)) → ¬ 𝑛 ∥ ((!‘(𝑁 − 1)) + 1)))
3523, 34mpd 15 . . . . 5 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → ¬ 𝑛 ∥ ((!‘(𝑁 − 1)) + 1))
36 simplr 752 . . . . . 6 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → 𝑁 ∥ ((!‘(𝑁 − 1)) + 1))
3719nnzd 11681 . . . . . . 7 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → 𝑛 ∈ ℤ)
3825nnzd 11681 . . . . . . 7 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ ℤ)
3929peano2zd 11685 . . . . . . 7 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → ((!‘(𝑁 − 1)) + 1) ∈ ℤ)
40 dvdstr 15220 . . . . . . 7 ((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((!‘(𝑁 − 1)) + 1) ∈ ℤ) → ((𝑛𝑁𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) → 𝑛 ∥ ((!‘(𝑁 − 1)) + 1)))
4137, 38, 39, 40syl3anc 1476 . . . . . 6 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → ((𝑛𝑁𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) → 𝑛 ∥ ((!‘(𝑁 − 1)) + 1)))
4236, 41mpan2d 674 . . . . 5 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → (𝑛𝑁𝑛 ∥ ((!‘(𝑁 − 1)) + 1)))
4335, 42mtod 189 . . . 4 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → ¬ 𝑛𝑁)
4443ralrimiva 3115 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) → ∀𝑛 ∈ (2...(𝑁 − 1)) ¬ 𝑛𝑁)
45 isprm3 15596 . . 3 (𝑁 ∈ ℙ ↔ (𝑁 ∈ (ℤ‘2) ∧ ∀𝑛 ∈ (2...(𝑁 − 1)) ¬ 𝑛𝑁))
4615, 44, 45sylanbrc 572 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) → 𝑁 ∈ ℙ)
4714, 46impbii 199 1 (𝑁 ∈ ℙ ↔ (𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wcel 2145  wral 3061  {crab 3065  𝒫 cpw 4297   class class class wbr 4786  cfv 6029  (class class class)co 6791  1c1 10137   + caddc 10139   < clt 10274  cmin 10466  cn 11220  2c2 11270  0cn0 11492  cz 11577  cuz 11886  ...cfz 12526   mod cmo 12869  cexp 13060  !cfa 13257  cdvds 15182  cprime 15585  mulGrpcmgp 18690  fldccnfld 19954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-inf2 8700  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214  ax-addf 10215  ax-mulf 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-of 7042  df-om 7211  df-1st 7313  df-2nd 7314  df-supp 7445  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-2o 7712  df-oadd 7715  df-er 7894  df-map 8009  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-fsupp 8430  df-sup 8502  df-inf 8503  df-oi 8569  df-card 8963  df-cda 9190  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-4 11281  df-5 11282  df-6 11283  df-7 11284  df-8 11285  df-9 11286  df-n0 11493  df-xnn0 11564  df-z 11578  df-dec 11694  df-uz 11887  df-rp 12029  df-fz 12527  df-fzo 12667  df-fl 12794  df-mod 12870  df-seq 13002  df-exp 13061  df-fac 13258  df-hash 13315  df-cj 14040  df-re 14041  df-im 14042  df-sqrt 14176  df-abs 14177  df-dvds 15183  df-gcd 15418  df-prm 15586  df-phi 15671  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16155  df-mulr 16156  df-starv 16157  df-tset 16161  df-ple 16162  df-ds 16165  df-unif 16166  df-0g 16303  df-gsum 16304  df-mre 16447  df-mrc 16448  df-acs 16450  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-grp 17626  df-minusg 17627  df-mulg 17742  df-subg 17792  df-cntz 17950  df-cmn 18395  df-mgp 18691  df-ur 18703  df-ring 18750  df-cring 18751  df-subrg 18981  df-cnfld 19955
This theorem is referenced by:  wilthimp  25012
  Copyright terms: Public domain W3C validator