MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wilth Structured version   Visualization version   GIF version

Theorem wilth 25656
Description: Wilson's theorem. A number is prime iff it is greater than or equal to 2 and (𝑁 − 1)! is congruent to -1, mod 𝑁, or alternatively if 𝑁 divides (𝑁 − 1)! + 1. In this part of the proof we show the relatively simple reverse implication; see wilthlem3 25655 for the forward implication. This is Metamath 100 proof #51. (Contributed by Mario Carneiro, 24-Jan-2015.) (Proof shortened by Fan Zheng, 16-Jun-2016.)
Assertion
Ref Expression
wilth (𝑁 ∈ ℙ ↔ (𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)))

Proof of Theorem wilth
Dummy variables 𝑥 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmuz2 16030 . . 3 (𝑁 ∈ ℙ → 𝑁 ∈ (ℤ‘2))
2 eqid 2798 . . . 4 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
3 eleq2w 2873 . . . . . 6 (𝑧 = 𝑥 → ((𝑁 − 1) ∈ 𝑧 ↔ (𝑁 − 1) ∈ 𝑥))
4 oveq1 7142 . . . . . . . . . 10 (𝑛 = 𝑦 → (𝑛↑(𝑁 − 2)) = (𝑦↑(𝑁 − 2)))
54oveq1d 7150 . . . . . . . . 9 (𝑛 = 𝑦 → ((𝑛↑(𝑁 − 2)) mod 𝑁) = ((𝑦↑(𝑁 − 2)) mod 𝑁))
65eleq1d 2874 . . . . . . . 8 (𝑛 = 𝑦 → (((𝑛↑(𝑁 − 2)) mod 𝑁) ∈ 𝑧 ↔ ((𝑦↑(𝑁 − 2)) mod 𝑁) ∈ 𝑧))
76cbvralvw 3396 . . . . . . 7 (∀𝑛𝑧 ((𝑛↑(𝑁 − 2)) mod 𝑁) ∈ 𝑧 ↔ ∀𝑦𝑧 ((𝑦↑(𝑁 − 2)) mod 𝑁) ∈ 𝑧)
8 eleq2w 2873 . . . . . . . 8 (𝑧 = 𝑥 → (((𝑦↑(𝑁 − 2)) mod 𝑁) ∈ 𝑧 ↔ ((𝑦↑(𝑁 − 2)) mod 𝑁) ∈ 𝑥))
98raleqbi1dv 3356 . . . . . . 7 (𝑧 = 𝑥 → (∀𝑦𝑧 ((𝑦↑(𝑁 − 2)) mod 𝑁) ∈ 𝑧 ↔ ∀𝑦𝑥 ((𝑦↑(𝑁 − 2)) mod 𝑁) ∈ 𝑥))
107, 9syl5bb 286 . . . . . 6 (𝑧 = 𝑥 → (∀𝑛𝑧 ((𝑛↑(𝑁 − 2)) mod 𝑁) ∈ 𝑧 ↔ ∀𝑦𝑥 ((𝑦↑(𝑁 − 2)) mod 𝑁) ∈ 𝑥))
113, 10anbi12d 633 . . . . 5 (𝑧 = 𝑥 → (((𝑁 − 1) ∈ 𝑧 ∧ ∀𝑛𝑧 ((𝑛↑(𝑁 − 2)) mod 𝑁) ∈ 𝑧) ↔ ((𝑁 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑁 − 2)) mod 𝑁) ∈ 𝑥)))
1211cbvrabv 3439 . . . 4 {𝑧 ∈ 𝒫 (1...(𝑁 − 1)) ∣ ((𝑁 − 1) ∈ 𝑧 ∧ ∀𝑛𝑧 ((𝑛↑(𝑁 − 2)) mod 𝑁) ∈ 𝑧)} = {𝑥 ∈ 𝒫 (1...(𝑁 − 1)) ∣ ((𝑁 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑁 − 2)) mod 𝑁) ∈ 𝑥)}
132, 12wilthlem3 25655 . . 3 (𝑁 ∈ ℙ → 𝑁 ∥ ((!‘(𝑁 − 1)) + 1))
141, 13jca 515 . 2 (𝑁 ∈ ℙ → (𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)))
15 simpl 486 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) → 𝑁 ∈ (ℤ‘2))
16 elfzuz 12898 . . . . . . . . 9 (𝑛 ∈ (2...(𝑁 − 1)) → 𝑛 ∈ (ℤ‘2))
1716adantl 485 . . . . . . . 8 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → 𝑛 ∈ (ℤ‘2))
18 eluz2nn 12272 . . . . . . . 8 (𝑛 ∈ (ℤ‘2) → 𝑛 ∈ ℕ)
1917, 18syl 17 . . . . . . 7 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → 𝑛 ∈ ℕ)
20 elfzuz3 12899 . . . . . . . 8 (𝑛 ∈ (2...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ𝑛))
2120adantl 485 . . . . . . 7 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → (𝑁 − 1) ∈ (ℤ𝑛))
22 dvdsfac 15668 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (𝑁 − 1) ∈ (ℤ𝑛)) → 𝑛 ∥ (!‘(𝑁 − 1)))
2319, 21, 22syl2anc 587 . . . . . 6 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → 𝑛 ∥ (!‘(𝑁 − 1)))
24 eluz2nn 12272 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2524ad2antrr 725 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ ℕ)
26 nnm1nn0 11926 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
27 faccl 13639 . . . . . . . . 9 ((𝑁 − 1) ∈ ℕ0 → (!‘(𝑁 − 1)) ∈ ℕ)
2825, 26, 273syl 18 . . . . . . . 8 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → (!‘(𝑁 − 1)) ∈ ℕ)
2928nnzd 12074 . . . . . . 7 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → (!‘(𝑁 − 1)) ∈ ℤ)
30 eluz2gt1 12308 . . . . . . . 8 (𝑛 ∈ (ℤ‘2) → 1 < 𝑛)
3117, 30syl 17 . . . . . . 7 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → 1 < 𝑛)
32 ndvdsp1 15752 . . . . . . 7 (((!‘(𝑁 − 1)) ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 1 < 𝑛) → (𝑛 ∥ (!‘(𝑁 − 1)) → ¬ 𝑛 ∥ ((!‘(𝑁 − 1)) + 1)))
3329, 19, 31, 32syl3anc 1368 . . . . . 6 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → (𝑛 ∥ (!‘(𝑁 − 1)) → ¬ 𝑛 ∥ ((!‘(𝑁 − 1)) + 1)))
3423, 33mpd 15 . . . . 5 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → ¬ 𝑛 ∥ ((!‘(𝑁 − 1)) + 1))
35 simplr 768 . . . . . 6 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → 𝑁 ∥ ((!‘(𝑁 − 1)) + 1))
3619nnzd 12074 . . . . . . 7 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → 𝑛 ∈ ℤ)
3725nnzd 12074 . . . . . . 7 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ ℤ)
3829peano2zd 12078 . . . . . . 7 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → ((!‘(𝑁 − 1)) + 1) ∈ ℤ)
39 dvdstr 15638 . . . . . . 7 ((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((!‘(𝑁 − 1)) + 1) ∈ ℤ) → ((𝑛𝑁𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) → 𝑛 ∥ ((!‘(𝑁 − 1)) + 1)))
4036, 37, 38, 39syl3anc 1368 . . . . . 6 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → ((𝑛𝑁𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) → 𝑛 ∥ ((!‘(𝑁 − 1)) + 1)))
4135, 40mpan2d 693 . . . . 5 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → (𝑛𝑁𝑛 ∥ ((!‘(𝑁 − 1)) + 1)))
4234, 41mtod 201 . . . 4 (((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) ∧ 𝑛 ∈ (2...(𝑁 − 1))) → ¬ 𝑛𝑁)
4342ralrimiva 3149 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) → ∀𝑛 ∈ (2...(𝑁 − 1)) ¬ 𝑛𝑁)
44 isprm3 16017 . . 3 (𝑁 ∈ ℙ ↔ (𝑁 ∈ (ℤ‘2) ∧ ∀𝑛 ∈ (2...(𝑁 − 1)) ¬ 𝑛𝑁))
4515, 43, 44sylanbrc 586 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)) → 𝑁 ∈ ℙ)
4614, 45impbii 212 1 (𝑁 ∈ ℙ ↔ (𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wcel 2111  wral 3106  {crab 3110  𝒫 cpw 4497   class class class wbr 5030  cfv 6324  (class class class)co 7135  1c1 10527   + caddc 10529   < clt 10664  cmin 10859  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  ...cfz 12885   mod cmo 13232  cexp 13425  !cfa 13629  cdvds 15599  cprime 16005  mulGrpcmgp 19232  fldccnfld 20091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834  df-prm 16006  df-phi 16093  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-mulg 18217  df-subg 18268  df-cntz 18439  df-cmn 18900  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-subrg 19526  df-cnfld 20092
This theorem is referenced by:  wilthimp  25657
  Copyright terms: Public domain W3C validator