MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac14lem Structured version   Visualization version   GIF version

Theorem dfac14lem 23511
Description: Lemma for dfac14 23512. By equipping 𝑆 ∪ {𝑃} for some 𝑃𝑆 with the particular point topology, we can show that 𝑃 is in the closure of 𝑆; hence the sequence 𝑃(𝑥) is in the product of the closures, and we can utilize this instance of ptcls 23510 to extract an element of the closure of X𝑘𝐼𝑆. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
dfac14lem.i (𝜑𝐼𝑉)
dfac14lem.s ((𝜑𝑥𝐼) → 𝑆𝑊)
dfac14lem.0 ((𝜑𝑥𝐼) → 𝑆 ≠ ∅)
dfac14lem.p 𝑃 = 𝒫 𝑆
dfac14lem.r 𝑅 = {𝑦 ∈ 𝒫 (𝑆 ∪ {𝑃}) ∣ (𝑃𝑦𝑦 = (𝑆 ∪ {𝑃}))}
dfac14lem.j 𝐽 = (∏t‘(𝑥𝐼𝑅))
dfac14lem.c (𝜑 → ((cls‘𝐽)‘X𝑥𝐼 𝑆) = X𝑥𝐼 ((cls‘𝑅)‘𝑆))
Assertion
Ref Expression
dfac14lem (𝜑X𝑥𝐼 𝑆 ≠ ∅)
Distinct variable groups:   𝑥,𝐼   𝑦,𝑃   𝜑,𝑥   𝑦,𝑆
Allowed substitution hints:   𝜑(𝑦)   𝑃(𝑥)   𝑅(𝑥,𝑦)   𝑆(𝑥)   𝐼(𝑦)   𝐽(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem dfac14lem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eleq2w 2813 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑃𝑦𝑃𝑧))
2 eqeq1 2734 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦 = (𝑆 ∪ {𝑃}) ↔ 𝑧 = (𝑆 ∪ {𝑃})))
31, 2imbi12d 344 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝑃𝑦𝑦 = (𝑆 ∪ {𝑃})) ↔ (𝑃𝑧𝑧 = (𝑆 ∪ {𝑃}))))
4 dfac14lem.r . . . . . . . . . 10 𝑅 = {𝑦 ∈ 𝒫 (𝑆 ∪ {𝑃}) ∣ (𝑃𝑦𝑦 = (𝑆 ∪ {𝑃}))}
53, 4elrab2 3665 . . . . . . . . 9 (𝑧𝑅 ↔ (𝑧 ∈ 𝒫 (𝑆 ∪ {𝑃}) ∧ (𝑃𝑧𝑧 = (𝑆 ∪ {𝑃}))))
6 dfac14lem.0 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → 𝑆 ≠ ∅)
76adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥𝐼) ∧ 𝑧 ∈ 𝒫 (𝑆 ∪ {𝑃})) → 𝑆 ≠ ∅)
8 ineq1 4179 . . . . . . . . . . . . . 14 (𝑧 = (𝑆 ∪ {𝑃}) → (𝑧𝑆) = ((𝑆 ∪ {𝑃}) ∩ 𝑆))
9 ssun1 4144 . . . . . . . . . . . . . . 15 𝑆 ⊆ (𝑆 ∪ {𝑃})
10 sseqin2 4189 . . . . . . . . . . . . . . 15 (𝑆 ⊆ (𝑆 ∪ {𝑃}) ↔ ((𝑆 ∪ {𝑃}) ∩ 𝑆) = 𝑆)
119, 10mpbi 230 . . . . . . . . . . . . . 14 ((𝑆 ∪ {𝑃}) ∩ 𝑆) = 𝑆
128, 11eqtrdi 2781 . . . . . . . . . . . . 13 (𝑧 = (𝑆 ∪ {𝑃}) → (𝑧𝑆) = 𝑆)
1312neeq1d 2985 . . . . . . . . . . . 12 (𝑧 = (𝑆 ∪ {𝑃}) → ((𝑧𝑆) ≠ ∅ ↔ 𝑆 ≠ ∅))
147, 13syl5ibrcom 247 . . . . . . . . . . 11 (((𝜑𝑥𝐼) ∧ 𝑧 ∈ 𝒫 (𝑆 ∪ {𝑃})) → (𝑧 = (𝑆 ∪ {𝑃}) → (𝑧𝑆) ≠ ∅))
1514imim2d 57 . . . . . . . . . 10 (((𝜑𝑥𝐼) ∧ 𝑧 ∈ 𝒫 (𝑆 ∪ {𝑃})) → ((𝑃𝑧𝑧 = (𝑆 ∪ {𝑃})) → (𝑃𝑧 → (𝑧𝑆) ≠ ∅)))
1615expimpd 453 . . . . . . . . 9 ((𝜑𝑥𝐼) → ((𝑧 ∈ 𝒫 (𝑆 ∪ {𝑃}) ∧ (𝑃𝑧𝑧 = (𝑆 ∪ {𝑃}))) → (𝑃𝑧 → (𝑧𝑆) ≠ ∅)))
175, 16biimtrid 242 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑧𝑅 → (𝑃𝑧 → (𝑧𝑆) ≠ ∅)))
1817ralrimiv 3125 . . . . . . 7 ((𝜑𝑥𝐼) → ∀𝑧𝑅 (𝑃𝑧 → (𝑧𝑆) ≠ ∅))
19 dfac14lem.s . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → 𝑆𝑊)
20 snex 5394 . . . . . . . . . . . 12 {𝑃} ∈ V
21 unexg 7722 . . . . . . . . . . . 12 ((𝑆𝑊 ∧ {𝑃} ∈ V) → (𝑆 ∪ {𝑃}) ∈ V)
2219, 20, 21sylancl 586 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (𝑆 ∪ {𝑃}) ∈ V)
23 ssun2 4145 . . . . . . . . . . . 12 {𝑃} ⊆ (𝑆 ∪ {𝑃})
24 dfac14lem.p . . . . . . . . . . . . . 14 𝑃 = 𝒫 𝑆
25 uniexg 7719 . . . . . . . . . . . . . . 15 (𝑆𝑊 𝑆 ∈ V)
26 pwexg 5336 . . . . . . . . . . . . . . 15 ( 𝑆 ∈ V → 𝒫 𝑆 ∈ V)
2719, 25, 263syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → 𝒫 𝑆 ∈ V)
2824, 27eqeltrid 2833 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → 𝑃 ∈ V)
29 snidg 4627 . . . . . . . . . . . . 13 (𝑃 ∈ V → 𝑃 ∈ {𝑃})
3028, 29syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → 𝑃 ∈ {𝑃})
3123, 30sselid 3947 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → 𝑃 ∈ (𝑆 ∪ {𝑃}))
32 epttop 22903 . . . . . . . . . . 11 (((𝑆 ∪ {𝑃}) ∈ V ∧ 𝑃 ∈ (𝑆 ∪ {𝑃})) → {𝑦 ∈ 𝒫 (𝑆 ∪ {𝑃}) ∣ (𝑃𝑦𝑦 = (𝑆 ∪ {𝑃}))} ∈ (TopOn‘(𝑆 ∪ {𝑃})))
3322, 31, 32syl2anc 584 . . . . . . . . . 10 ((𝜑𝑥𝐼) → {𝑦 ∈ 𝒫 (𝑆 ∪ {𝑃}) ∣ (𝑃𝑦𝑦 = (𝑆 ∪ {𝑃}))} ∈ (TopOn‘(𝑆 ∪ {𝑃})))
344, 33eqeltrid 2833 . . . . . . . . 9 ((𝜑𝑥𝐼) → 𝑅 ∈ (TopOn‘(𝑆 ∪ {𝑃})))
35 topontop 22807 . . . . . . . . 9 (𝑅 ∈ (TopOn‘(𝑆 ∪ {𝑃})) → 𝑅 ∈ Top)
3634, 35syl 17 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑅 ∈ Top)
37 toponuni 22808 . . . . . . . . . 10 (𝑅 ∈ (TopOn‘(𝑆 ∪ {𝑃})) → (𝑆 ∪ {𝑃}) = 𝑅)
3834, 37syl 17 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝑆 ∪ {𝑃}) = 𝑅)
399, 38sseqtrid 3992 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑆 𝑅)
4031, 38eleqtrd 2831 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑃 𝑅)
41 eqid 2730 . . . . . . . . 9 𝑅 = 𝑅
4241elcls 22967 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝑆 𝑅𝑃 𝑅) → (𝑃 ∈ ((cls‘𝑅)‘𝑆) ↔ ∀𝑧𝑅 (𝑃𝑧 → (𝑧𝑆) ≠ ∅)))
4336, 39, 40, 42syl3anc 1373 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑃 ∈ ((cls‘𝑅)‘𝑆) ↔ ∀𝑧𝑅 (𝑃𝑧 → (𝑧𝑆) ≠ ∅)))
4418, 43mpbird 257 . . . . . 6 ((𝜑𝑥𝐼) → 𝑃 ∈ ((cls‘𝑅)‘𝑆))
4544ralrimiva 3126 . . . . 5 (𝜑 → ∀𝑥𝐼 𝑃 ∈ ((cls‘𝑅)‘𝑆))
46 dfac14lem.i . . . . . 6 (𝜑𝐼𝑉)
47 mptelixpg 8911 . . . . . 6 (𝐼𝑉 → ((𝑥𝐼𝑃) ∈ X𝑥𝐼 ((cls‘𝑅)‘𝑆) ↔ ∀𝑥𝐼 𝑃 ∈ ((cls‘𝑅)‘𝑆)))
4846, 47syl 17 . . . . 5 (𝜑 → ((𝑥𝐼𝑃) ∈ X𝑥𝐼 ((cls‘𝑅)‘𝑆) ↔ ∀𝑥𝐼 𝑃 ∈ ((cls‘𝑅)‘𝑆)))
4945, 48mpbird 257 . . . 4 (𝜑 → (𝑥𝐼𝑃) ∈ X𝑥𝐼 ((cls‘𝑅)‘𝑆))
5049ne0d 4308 . . 3 (𝜑X𝑥𝐼 ((cls‘𝑅)‘𝑆) ≠ ∅)
51 dfac14lem.c . . 3 (𝜑 → ((cls‘𝐽)‘X𝑥𝐼 𝑆) = X𝑥𝐼 ((cls‘𝑅)‘𝑆))
5234ralrimiva 3126 . . . . 5 (𝜑 → ∀𝑥𝐼 𝑅 ∈ (TopOn‘(𝑆 ∪ {𝑃})))
53 dfac14lem.j . . . . . 6 𝐽 = (∏t‘(𝑥𝐼𝑅))
5453pttopon 23490 . . . . 5 ((𝐼𝑉 ∧ ∀𝑥𝐼 𝑅 ∈ (TopOn‘(𝑆 ∪ {𝑃}))) → 𝐽 ∈ (TopOn‘X𝑥𝐼 (𝑆 ∪ {𝑃})))
5546, 52, 54syl2anc 584 . . . 4 (𝜑𝐽 ∈ (TopOn‘X𝑥𝐼 (𝑆 ∪ {𝑃})))
56 topontop 22807 . . . 4 (𝐽 ∈ (TopOn‘X𝑥𝐼 (𝑆 ∪ {𝑃})) → 𝐽 ∈ Top)
57 cls0 22974 . . . 4 (𝐽 ∈ Top → ((cls‘𝐽)‘∅) = ∅)
5855, 56, 573syl 18 . . 3 (𝜑 → ((cls‘𝐽)‘∅) = ∅)
5950, 51, 583netr4d 3003 . 2 (𝜑 → ((cls‘𝐽)‘X𝑥𝐼 𝑆) ≠ ((cls‘𝐽)‘∅))
60 fveq2 6861 . . 3 (X𝑥𝐼 𝑆 = ∅ → ((cls‘𝐽)‘X𝑥𝐼 𝑆) = ((cls‘𝐽)‘∅))
6160necon3i 2958 . 2 (((cls‘𝐽)‘X𝑥𝐼 𝑆) ≠ ((cls‘𝐽)‘∅) → X𝑥𝐼 𝑆 ≠ ∅)
6259, 61syl 17 1 (𝜑X𝑥𝐼 𝑆 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  {crab 3408  Vcvv 3450  cun 3915  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592   cuni 4874  cmpt 5191  cfv 6514  Xcixp 8873  tcpt 17408  Topctop 22787  TopOnctopon 22804  clsccl 22912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-2o 8438  df-ixp 8874  df-en 8922  df-fin 8925  df-fi 9369  df-topgen 17413  df-pt 17414  df-top 22788  df-topon 22805  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915
This theorem is referenced by:  dfac14  23512
  Copyright terms: Public domain W3C validator