Step | Hyp | Ref
| Expression |
1 | | eleq2w 2822 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (𝑃 ∈ 𝑦 ↔ 𝑃 ∈ 𝑧)) |
2 | | eqeq1 2742 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (𝑦 = (𝑆 ∪ {𝑃}) ↔ 𝑧 = (𝑆 ∪ {𝑃}))) |
3 | 1, 2 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → ((𝑃 ∈ 𝑦 → 𝑦 = (𝑆 ∪ {𝑃})) ↔ (𝑃 ∈ 𝑧 → 𝑧 = (𝑆 ∪ {𝑃})))) |
4 | | dfac14lem.r |
. . . . . . . . . 10
⊢ 𝑅 = {𝑦 ∈ 𝒫 (𝑆 ∪ {𝑃}) ∣ (𝑃 ∈ 𝑦 → 𝑦 = (𝑆 ∪ {𝑃}))} |
5 | 3, 4 | elrab2 3627 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑅 ↔ (𝑧 ∈ 𝒫 (𝑆 ∪ {𝑃}) ∧ (𝑃 ∈ 𝑧 → 𝑧 = (𝑆 ∪ {𝑃})))) |
6 | | dfac14lem.0 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ≠ ∅) |
7 | 6 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑧 ∈ 𝒫 (𝑆 ∪ {𝑃})) → 𝑆 ≠ ∅) |
8 | | ineq1 4139 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑆 ∪ {𝑃}) → (𝑧 ∩ 𝑆) = ((𝑆 ∪ {𝑃}) ∩ 𝑆)) |
9 | | ssun1 4106 |
. . . . . . . . . . . . . . 15
⊢ 𝑆 ⊆ (𝑆 ∪ {𝑃}) |
10 | | sseqin2 4149 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 ⊆ (𝑆 ∪ {𝑃}) ↔ ((𝑆 ∪ {𝑃}) ∩ 𝑆) = 𝑆) |
11 | 9, 10 | mpbi 229 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∪ {𝑃}) ∩ 𝑆) = 𝑆 |
12 | 8, 11 | eqtrdi 2794 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝑆 ∪ {𝑃}) → (𝑧 ∩ 𝑆) = 𝑆) |
13 | 12 | neeq1d 3003 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑆 ∪ {𝑃}) → ((𝑧 ∩ 𝑆) ≠ ∅ ↔ 𝑆 ≠ ∅)) |
14 | 7, 13 | syl5ibrcom 246 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑧 ∈ 𝒫 (𝑆 ∪ {𝑃})) → (𝑧 = (𝑆 ∪ {𝑃}) → (𝑧 ∩ 𝑆) ≠ ∅)) |
15 | 14 | imim2d 57 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑧 ∈ 𝒫 (𝑆 ∪ {𝑃})) → ((𝑃 ∈ 𝑧 → 𝑧 = (𝑆 ∪ {𝑃})) → (𝑃 ∈ 𝑧 → (𝑧 ∩ 𝑆) ≠ ∅))) |
16 | 15 | expimpd 454 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑧 ∈ 𝒫 (𝑆 ∪ {𝑃}) ∧ (𝑃 ∈ 𝑧 → 𝑧 = (𝑆 ∪ {𝑃}))) → (𝑃 ∈ 𝑧 → (𝑧 ∩ 𝑆) ≠ ∅))) |
17 | 5, 16 | syl5bi 241 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑧 ∈ 𝑅 → (𝑃 ∈ 𝑧 → (𝑧 ∩ 𝑆) ≠ ∅))) |
18 | 17 | ralrimiv 3102 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ∀𝑧 ∈ 𝑅 (𝑃 ∈ 𝑧 → (𝑧 ∩ 𝑆) ≠ ∅)) |
19 | | dfac14lem.s |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ∈ 𝑊) |
20 | | snex 5354 |
. . . . . . . . . . . 12
⊢ {𝑃} ∈ V |
21 | | unexg 7599 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ 𝑊 ∧ {𝑃} ∈ V) → (𝑆 ∪ {𝑃}) ∈ V) |
22 | 19, 20, 21 | sylancl 586 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑆 ∪ {𝑃}) ∈ V) |
23 | | ssun2 4107 |
. . . . . . . . . . . 12
⊢ {𝑃} ⊆ (𝑆 ∪ {𝑃}) |
24 | | dfac14lem.p |
. . . . . . . . . . . . . 14
⊢ 𝑃 = 𝒫 ∪ 𝑆 |
25 | | uniexg 7593 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 ∈ 𝑊 → ∪ 𝑆 ∈ V) |
26 | | pwexg 5301 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝑆
∈ V → 𝒫 ∪ 𝑆 ∈ V) |
27 | 19, 25, 26 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝒫 ∪ 𝑆
∈ V) |
28 | 24, 27 | eqeltrid 2843 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑃 ∈ V) |
29 | | snidg 4595 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ V → 𝑃 ∈ {𝑃}) |
30 | 28, 29 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑃 ∈ {𝑃}) |
31 | 23, 30 | sselid 3919 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑃 ∈ (𝑆 ∪ {𝑃})) |
32 | | epttop 22159 |
. . . . . . . . . . 11
⊢ (((𝑆 ∪ {𝑃}) ∈ V ∧ 𝑃 ∈ (𝑆 ∪ {𝑃})) → {𝑦 ∈ 𝒫 (𝑆 ∪ {𝑃}) ∣ (𝑃 ∈ 𝑦 → 𝑦 = (𝑆 ∪ {𝑃}))} ∈ (TopOn‘(𝑆 ∪ {𝑃}))) |
33 | 22, 31, 32 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → {𝑦 ∈ 𝒫 (𝑆 ∪ {𝑃}) ∣ (𝑃 ∈ 𝑦 → 𝑦 = (𝑆 ∪ {𝑃}))} ∈ (TopOn‘(𝑆 ∪ {𝑃}))) |
34 | 4, 33 | eqeltrid 2843 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ (TopOn‘(𝑆 ∪ {𝑃}))) |
35 | | topontop 22062 |
. . . . . . . . 9
⊢ (𝑅 ∈ (TopOn‘(𝑆 ∪ {𝑃})) → 𝑅 ∈ Top) |
36 | 34, 35 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ Top) |
37 | | toponuni 22063 |
. . . . . . . . . 10
⊢ (𝑅 ∈ (TopOn‘(𝑆 ∪ {𝑃})) → (𝑆 ∪ {𝑃}) = ∪ 𝑅) |
38 | 34, 37 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑆 ∪ {𝑃}) = ∪ 𝑅) |
39 | 9, 38 | sseqtrid 3973 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ⊆ ∪ 𝑅) |
40 | 31, 38 | eleqtrd 2841 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑃 ∈ ∪ 𝑅) |
41 | | eqid 2738 |
. . . . . . . . 9
⊢ ∪ 𝑅 =
∪ 𝑅 |
42 | 41 | elcls 22224 |
. . . . . . . 8
⊢ ((𝑅 ∈ Top ∧ 𝑆 ⊆ ∪ 𝑅
∧ 𝑃 ∈ ∪ 𝑅)
→ (𝑃 ∈
((cls‘𝑅)‘𝑆) ↔ ∀𝑧 ∈ 𝑅 (𝑃 ∈ 𝑧 → (𝑧 ∩ 𝑆) ≠ ∅))) |
43 | 36, 39, 40, 42 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑃 ∈ ((cls‘𝑅)‘𝑆) ↔ ∀𝑧 ∈ 𝑅 (𝑃 ∈ 𝑧 → (𝑧 ∩ 𝑆) ≠ ∅))) |
44 | 18, 43 | mpbird 256 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑃 ∈ ((cls‘𝑅)‘𝑆)) |
45 | 44 | ralrimiva 3103 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑃 ∈ ((cls‘𝑅)‘𝑆)) |
46 | | dfac14lem.i |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
47 | | mptelixpg 8723 |
. . . . . 6
⊢ (𝐼 ∈ 𝑉 → ((𝑥 ∈ 𝐼 ↦ 𝑃) ∈ X𝑥 ∈ 𝐼 ((cls‘𝑅)‘𝑆) ↔ ∀𝑥 ∈ 𝐼 𝑃 ∈ ((cls‘𝑅)‘𝑆))) |
48 | 46, 47 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ 𝑃) ∈ X𝑥 ∈ 𝐼 ((cls‘𝑅)‘𝑆) ↔ ∀𝑥 ∈ 𝐼 𝑃 ∈ ((cls‘𝑅)‘𝑆))) |
49 | 45, 48 | mpbird 256 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝑃) ∈ X𝑥 ∈ 𝐼 ((cls‘𝑅)‘𝑆)) |
50 | 49 | ne0d 4269 |
. . 3
⊢ (𝜑 → X𝑥 ∈
𝐼 ((cls‘𝑅)‘𝑆) ≠ ∅) |
51 | | dfac14lem.c |
. . 3
⊢ (𝜑 → ((cls‘𝐽)‘X𝑥 ∈
𝐼 𝑆) = X𝑥 ∈ 𝐼 ((cls‘𝑅)‘𝑆)) |
52 | 34 | ralrimiva 3103 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ (TopOn‘(𝑆 ∪ {𝑃}))) |
53 | | dfac14lem.j |
. . . . . 6
⊢ 𝐽 =
(∏t‘(𝑥 ∈ 𝐼 ↦ 𝑅)) |
54 | 53 | pttopon 22747 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐼 𝑅 ∈ (TopOn‘(𝑆 ∪ {𝑃}))) → 𝐽 ∈ (TopOn‘X𝑥 ∈
𝐼 (𝑆 ∪ {𝑃}))) |
55 | 46, 52, 54 | syl2anc 584 |
. . . 4
⊢ (𝜑 → 𝐽 ∈ (TopOn‘X𝑥 ∈
𝐼 (𝑆 ∪ {𝑃}))) |
56 | | topontop 22062 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘X𝑥 ∈
𝐼 (𝑆 ∪ {𝑃})) → 𝐽 ∈ Top) |
57 | | cls0 22231 |
. . . 4
⊢ (𝐽 ∈ Top →
((cls‘𝐽)‘∅) = ∅) |
58 | 55, 56, 57 | 3syl 18 |
. . 3
⊢ (𝜑 → ((cls‘𝐽)‘∅) =
∅) |
59 | 50, 51, 58 | 3netr4d 3021 |
. 2
⊢ (𝜑 → ((cls‘𝐽)‘X𝑥 ∈
𝐼 𝑆) ≠ ((cls‘𝐽)‘∅)) |
60 | | fveq2 6774 |
. . 3
⊢ (X𝑥 ∈
𝐼 𝑆 = ∅ → ((cls‘𝐽)‘X𝑥 ∈
𝐼 𝑆) = ((cls‘𝐽)‘∅)) |
61 | 60 | necon3i 2976 |
. 2
⊢
(((cls‘𝐽)‘X𝑥 ∈ 𝐼 𝑆) ≠ ((cls‘𝐽)‘∅) → X𝑥 ∈
𝐼 𝑆 ≠ ∅) |
62 | 59, 61 | syl 17 |
1
⊢ (𝜑 → X𝑥 ∈
𝐼 𝑆 ≠ ∅) |