MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac14lem Structured version   Visualization version   GIF version

Theorem dfac14lem 22676
Description: Lemma for dfac14 22677. By equipping 𝑆 ∪ {𝑃} for some 𝑃𝑆 with the particular point topology, we can show that 𝑃 is in the closure of 𝑆; hence the sequence 𝑃(𝑥) is in the product of the closures, and we can utilize this instance of ptcls 22675 to extract an element of the closure of X𝑘𝐼𝑆. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
dfac14lem.i (𝜑𝐼𝑉)
dfac14lem.s ((𝜑𝑥𝐼) → 𝑆𝑊)
dfac14lem.0 ((𝜑𝑥𝐼) → 𝑆 ≠ ∅)
dfac14lem.p 𝑃 = 𝒫 𝑆
dfac14lem.r 𝑅 = {𝑦 ∈ 𝒫 (𝑆 ∪ {𝑃}) ∣ (𝑃𝑦𝑦 = (𝑆 ∪ {𝑃}))}
dfac14lem.j 𝐽 = (∏t‘(𝑥𝐼𝑅))
dfac14lem.c (𝜑 → ((cls‘𝐽)‘X𝑥𝐼 𝑆) = X𝑥𝐼 ((cls‘𝑅)‘𝑆))
Assertion
Ref Expression
dfac14lem (𝜑X𝑥𝐼 𝑆 ≠ ∅)
Distinct variable groups:   𝑥,𝐼   𝑦,𝑃   𝜑,𝑥   𝑦,𝑆
Allowed substitution hints:   𝜑(𝑦)   𝑃(𝑥)   𝑅(𝑥,𝑦)   𝑆(𝑥)   𝐼(𝑦)   𝐽(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem dfac14lem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eleq2w 2822 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑃𝑦𝑃𝑧))
2 eqeq1 2742 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦 = (𝑆 ∪ {𝑃}) ↔ 𝑧 = (𝑆 ∪ {𝑃})))
31, 2imbi12d 344 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝑃𝑦𝑦 = (𝑆 ∪ {𝑃})) ↔ (𝑃𝑧𝑧 = (𝑆 ∪ {𝑃}))))
4 dfac14lem.r . . . . . . . . . 10 𝑅 = {𝑦 ∈ 𝒫 (𝑆 ∪ {𝑃}) ∣ (𝑃𝑦𝑦 = (𝑆 ∪ {𝑃}))}
53, 4elrab2 3620 . . . . . . . . 9 (𝑧𝑅 ↔ (𝑧 ∈ 𝒫 (𝑆 ∪ {𝑃}) ∧ (𝑃𝑧𝑧 = (𝑆 ∪ {𝑃}))))
6 dfac14lem.0 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → 𝑆 ≠ ∅)
76adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥𝐼) ∧ 𝑧 ∈ 𝒫 (𝑆 ∪ {𝑃})) → 𝑆 ≠ ∅)
8 ineq1 4136 . . . . . . . . . . . . . 14 (𝑧 = (𝑆 ∪ {𝑃}) → (𝑧𝑆) = ((𝑆 ∪ {𝑃}) ∩ 𝑆))
9 ssun1 4102 . . . . . . . . . . . . . . 15 𝑆 ⊆ (𝑆 ∪ {𝑃})
10 sseqin2 4146 . . . . . . . . . . . . . . 15 (𝑆 ⊆ (𝑆 ∪ {𝑃}) ↔ ((𝑆 ∪ {𝑃}) ∩ 𝑆) = 𝑆)
119, 10mpbi 229 . . . . . . . . . . . . . 14 ((𝑆 ∪ {𝑃}) ∩ 𝑆) = 𝑆
128, 11eqtrdi 2795 . . . . . . . . . . . . 13 (𝑧 = (𝑆 ∪ {𝑃}) → (𝑧𝑆) = 𝑆)
1312neeq1d 3002 . . . . . . . . . . . 12 (𝑧 = (𝑆 ∪ {𝑃}) → ((𝑧𝑆) ≠ ∅ ↔ 𝑆 ≠ ∅))
147, 13syl5ibrcom 246 . . . . . . . . . . 11 (((𝜑𝑥𝐼) ∧ 𝑧 ∈ 𝒫 (𝑆 ∪ {𝑃})) → (𝑧 = (𝑆 ∪ {𝑃}) → (𝑧𝑆) ≠ ∅))
1514imim2d 57 . . . . . . . . . 10 (((𝜑𝑥𝐼) ∧ 𝑧 ∈ 𝒫 (𝑆 ∪ {𝑃})) → ((𝑃𝑧𝑧 = (𝑆 ∪ {𝑃})) → (𝑃𝑧 → (𝑧𝑆) ≠ ∅)))
1615expimpd 453 . . . . . . . . 9 ((𝜑𝑥𝐼) → ((𝑧 ∈ 𝒫 (𝑆 ∪ {𝑃}) ∧ (𝑃𝑧𝑧 = (𝑆 ∪ {𝑃}))) → (𝑃𝑧 → (𝑧𝑆) ≠ ∅)))
175, 16syl5bi 241 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑧𝑅 → (𝑃𝑧 → (𝑧𝑆) ≠ ∅)))
1817ralrimiv 3106 . . . . . . 7 ((𝜑𝑥𝐼) → ∀𝑧𝑅 (𝑃𝑧 → (𝑧𝑆) ≠ ∅))
19 dfac14lem.s . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → 𝑆𝑊)
20 snex 5349 . . . . . . . . . . . 12 {𝑃} ∈ V
21 unexg 7577 . . . . . . . . . . . 12 ((𝑆𝑊 ∧ {𝑃} ∈ V) → (𝑆 ∪ {𝑃}) ∈ V)
2219, 20, 21sylancl 585 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (𝑆 ∪ {𝑃}) ∈ V)
23 ssun2 4103 . . . . . . . . . . . 12 {𝑃} ⊆ (𝑆 ∪ {𝑃})
24 dfac14lem.p . . . . . . . . . . . . . 14 𝑃 = 𝒫 𝑆
25 uniexg 7571 . . . . . . . . . . . . . . 15 (𝑆𝑊 𝑆 ∈ V)
26 pwexg 5296 . . . . . . . . . . . . . . 15 ( 𝑆 ∈ V → 𝒫 𝑆 ∈ V)
2719, 25, 263syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → 𝒫 𝑆 ∈ V)
2824, 27eqeltrid 2843 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → 𝑃 ∈ V)
29 snidg 4592 . . . . . . . . . . . . 13 (𝑃 ∈ V → 𝑃 ∈ {𝑃})
3028, 29syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → 𝑃 ∈ {𝑃})
3123, 30sselid 3915 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → 𝑃 ∈ (𝑆 ∪ {𝑃}))
32 epttop 22067 . . . . . . . . . . 11 (((𝑆 ∪ {𝑃}) ∈ V ∧ 𝑃 ∈ (𝑆 ∪ {𝑃})) → {𝑦 ∈ 𝒫 (𝑆 ∪ {𝑃}) ∣ (𝑃𝑦𝑦 = (𝑆 ∪ {𝑃}))} ∈ (TopOn‘(𝑆 ∪ {𝑃})))
3322, 31, 32syl2anc 583 . . . . . . . . . 10 ((𝜑𝑥𝐼) → {𝑦 ∈ 𝒫 (𝑆 ∪ {𝑃}) ∣ (𝑃𝑦𝑦 = (𝑆 ∪ {𝑃}))} ∈ (TopOn‘(𝑆 ∪ {𝑃})))
344, 33eqeltrid 2843 . . . . . . . . 9 ((𝜑𝑥𝐼) → 𝑅 ∈ (TopOn‘(𝑆 ∪ {𝑃})))
35 topontop 21970 . . . . . . . . 9 (𝑅 ∈ (TopOn‘(𝑆 ∪ {𝑃})) → 𝑅 ∈ Top)
3634, 35syl 17 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑅 ∈ Top)
37 toponuni 21971 . . . . . . . . . 10 (𝑅 ∈ (TopOn‘(𝑆 ∪ {𝑃})) → (𝑆 ∪ {𝑃}) = 𝑅)
3834, 37syl 17 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝑆 ∪ {𝑃}) = 𝑅)
399, 38sseqtrid 3969 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑆 𝑅)
4031, 38eleqtrd 2841 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑃 𝑅)
41 eqid 2738 . . . . . . . . 9 𝑅 = 𝑅
4241elcls 22132 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝑆 𝑅𝑃 𝑅) → (𝑃 ∈ ((cls‘𝑅)‘𝑆) ↔ ∀𝑧𝑅 (𝑃𝑧 → (𝑧𝑆) ≠ ∅)))
4336, 39, 40, 42syl3anc 1369 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑃 ∈ ((cls‘𝑅)‘𝑆) ↔ ∀𝑧𝑅 (𝑃𝑧 → (𝑧𝑆) ≠ ∅)))
4418, 43mpbird 256 . . . . . 6 ((𝜑𝑥𝐼) → 𝑃 ∈ ((cls‘𝑅)‘𝑆))
4544ralrimiva 3107 . . . . 5 (𝜑 → ∀𝑥𝐼 𝑃 ∈ ((cls‘𝑅)‘𝑆))
46 dfac14lem.i . . . . . 6 (𝜑𝐼𝑉)
47 mptelixpg 8681 . . . . . 6 (𝐼𝑉 → ((𝑥𝐼𝑃) ∈ X𝑥𝐼 ((cls‘𝑅)‘𝑆) ↔ ∀𝑥𝐼 𝑃 ∈ ((cls‘𝑅)‘𝑆)))
4846, 47syl 17 . . . . 5 (𝜑 → ((𝑥𝐼𝑃) ∈ X𝑥𝐼 ((cls‘𝑅)‘𝑆) ↔ ∀𝑥𝐼 𝑃 ∈ ((cls‘𝑅)‘𝑆)))
4945, 48mpbird 256 . . . 4 (𝜑 → (𝑥𝐼𝑃) ∈ X𝑥𝐼 ((cls‘𝑅)‘𝑆))
5049ne0d 4266 . . 3 (𝜑X𝑥𝐼 ((cls‘𝑅)‘𝑆) ≠ ∅)
51 dfac14lem.c . . 3 (𝜑 → ((cls‘𝐽)‘X𝑥𝐼 𝑆) = X𝑥𝐼 ((cls‘𝑅)‘𝑆))
5234ralrimiva 3107 . . . . 5 (𝜑 → ∀𝑥𝐼 𝑅 ∈ (TopOn‘(𝑆 ∪ {𝑃})))
53 dfac14lem.j . . . . . 6 𝐽 = (∏t‘(𝑥𝐼𝑅))
5453pttopon 22655 . . . . 5 ((𝐼𝑉 ∧ ∀𝑥𝐼 𝑅 ∈ (TopOn‘(𝑆 ∪ {𝑃}))) → 𝐽 ∈ (TopOn‘X𝑥𝐼 (𝑆 ∪ {𝑃})))
5546, 52, 54syl2anc 583 . . . 4 (𝜑𝐽 ∈ (TopOn‘X𝑥𝐼 (𝑆 ∪ {𝑃})))
56 topontop 21970 . . . 4 (𝐽 ∈ (TopOn‘X𝑥𝐼 (𝑆 ∪ {𝑃})) → 𝐽 ∈ Top)
57 cls0 22139 . . . 4 (𝐽 ∈ Top → ((cls‘𝐽)‘∅) = ∅)
5855, 56, 573syl 18 . . 3 (𝜑 → ((cls‘𝐽)‘∅) = ∅)
5950, 51, 583netr4d 3020 . 2 (𝜑 → ((cls‘𝐽)‘X𝑥𝐼 𝑆) ≠ ((cls‘𝐽)‘∅))
60 fveq2 6756 . . 3 (X𝑥𝐼 𝑆 = ∅ → ((cls‘𝐽)‘X𝑥𝐼 𝑆) = ((cls‘𝐽)‘∅))
6160necon3i 2975 . 2 (((cls‘𝐽)‘X𝑥𝐼 𝑆) ≠ ((cls‘𝐽)‘∅) → X𝑥𝐼 𝑆 ≠ ∅)
6259, 61syl 17 1 (𝜑X𝑥𝐼 𝑆 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  {crab 3067  Vcvv 3422  cun 3881  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558   cuni 4836  cmpt 5153  cfv 6418  Xcixp 8643  tcpt 17066  Topctop 21950  TopOnctopon 21967  clsccl 22077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-er 8456  df-ixp 8644  df-en 8692  df-fin 8695  df-fi 9100  df-topgen 17071  df-pt 17072  df-top 21951  df-topon 21968  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080
This theorem is referenced by:  dfac14  22677
  Copyright terms: Public domain W3C validator