Step | Hyp | Ref
| Expression |
1 | | lssacs.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑊) |
2 | | lssacs.s |
. . . . . 6
⊢ 𝑆 = (LSubSp‘𝑊) |
3 | 1, 2 | lssss 20113 |
. . . . 5
⊢ (𝑎 ∈ 𝑆 → 𝑎 ⊆ 𝐵) |
4 | 3 | a1i 11 |
. . . 4
⊢ (𝑊 ∈ LMod → (𝑎 ∈ 𝑆 → 𝑎 ⊆ 𝐵)) |
5 | | inss2 4160 |
. . . . . . . 8
⊢
((SubGrp‘𝑊)
∩ {𝑏 ∈ 𝒫
𝐵 ∣ ∀𝑥 ∈
(Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑏 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑏}) ⊆ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑏 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑏} |
6 | | ssrab2 4009 |
. . . . . . . 8
⊢ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈
(Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑏 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑏} ⊆ 𝒫 𝐵 |
7 | 5, 6 | sstri 3926 |
. . . . . . 7
⊢
((SubGrp‘𝑊)
∩ {𝑏 ∈ 𝒫
𝐵 ∣ ∀𝑥 ∈
(Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑏 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑏}) ⊆ 𝒫 𝐵 |
8 | 7 | sseli 3913 |
. . . . . 6
⊢ (𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑏 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑏}) → 𝑎 ∈ 𝒫 𝐵) |
9 | 8 | elpwid 4541 |
. . . . 5
⊢ (𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑏 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑏}) → 𝑎 ⊆ 𝐵) |
10 | 9 | a1i 11 |
. . . 4
⊢ (𝑊 ∈ LMod → (𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑏 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑏}) → 𝑎 ⊆ 𝐵)) |
11 | | eqid 2738 |
. . . . . . . . 9
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
12 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
13 | | eqid 2738 |
. . . . . . . . 9
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
14 | 11, 12, 1, 13, 2 | islss4 20139 |
. . . . . . . 8
⊢ (𝑊 ∈ LMod → (𝑎 ∈ 𝑆 ↔ (𝑎 ∈ (SubGrp‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑎 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑎))) |
15 | 14 | adantr 480 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑎 ⊆ 𝐵) → (𝑎 ∈ 𝑆 ↔ (𝑎 ∈ (SubGrp‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑎 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑎))) |
16 | | velpw 4535 |
. . . . . . . . . 10
⊢ (𝑎 ∈ 𝒫 𝐵 ↔ 𝑎 ⊆ 𝐵) |
17 | | eleq2w 2822 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑎 → ((𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑏 ↔ (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑎)) |
18 | 17 | raleqbi1dv 3331 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑎 → (∀𝑦 ∈ 𝑏 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑏 ↔ ∀𝑦 ∈ 𝑎 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑎)) |
19 | 18 | ralbidv 3120 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑎 → (∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑏 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑏 ↔ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑎 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑎)) |
20 | 19 | elrab3 3618 |
. . . . . . . . . 10
⊢ (𝑎 ∈ 𝒫 𝐵 → (𝑎 ∈ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑏 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑏} ↔ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑎 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑎)) |
21 | 16, 20 | sylbir 234 |
. . . . . . . . 9
⊢ (𝑎 ⊆ 𝐵 → (𝑎 ∈ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑏 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑏} ↔ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑎 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑎)) |
22 | 21 | adantl 481 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝑎 ⊆ 𝐵) → (𝑎 ∈ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑏 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑏} ↔ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑎 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑎)) |
23 | 22 | anbi2d 628 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑎 ⊆ 𝐵) → ((𝑎 ∈ (SubGrp‘𝑊) ∧ 𝑎 ∈ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑏 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑏}) ↔ (𝑎 ∈ (SubGrp‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑎 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑎))) |
24 | 15, 23 | bitr4d 281 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑎 ⊆ 𝐵) → (𝑎 ∈ 𝑆 ↔ (𝑎 ∈ (SubGrp‘𝑊) ∧ 𝑎 ∈ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑏 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑏}))) |
25 | | elin 3899 |
. . . . . 6
⊢ (𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑏 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑏}) ↔ (𝑎 ∈ (SubGrp‘𝑊) ∧ 𝑎 ∈ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑏 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑏})) |
26 | 24, 25 | bitr4di 288 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑎 ⊆ 𝐵) → (𝑎 ∈ 𝑆 ↔ 𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑏 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑏}))) |
27 | 26 | ex 412 |
. . . 4
⊢ (𝑊 ∈ LMod → (𝑎 ⊆ 𝐵 → (𝑎 ∈ 𝑆 ↔ 𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑏 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑏})))) |
28 | 4, 10, 27 | pm5.21ndd 380 |
. . 3
⊢ (𝑊 ∈ LMod → (𝑎 ∈ 𝑆 ↔ 𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑏 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑏}))) |
29 | 28 | eqrdv 2736 |
. 2
⊢ (𝑊 ∈ LMod → 𝑆 = ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑏 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑏})) |
30 | 1 | fvexi 6770 |
. . . 4
⊢ 𝐵 ∈ V |
31 | | mreacs 17284 |
. . . 4
⊢ (𝐵 ∈ V →
(ACS‘𝐵) ∈
(Moore‘𝒫 𝐵)) |
32 | 30, 31 | mp1i 13 |
. . 3
⊢ (𝑊 ∈ LMod →
(ACS‘𝐵) ∈
(Moore‘𝒫 𝐵)) |
33 | | lmodgrp 20045 |
. . . 4
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
34 | 1 | subgacs 18704 |
. . . 4
⊢ (𝑊 ∈ Grp →
(SubGrp‘𝑊) ∈
(ACS‘𝐵)) |
35 | 33, 34 | syl 17 |
. . 3
⊢ (𝑊 ∈ LMod →
(SubGrp‘𝑊) ∈
(ACS‘𝐵)) |
36 | 1, 11, 13, 12 | lmodvscl 20055 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ 𝐵) → (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝐵) |
37 | 36 | 3expb 1118 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝐵) |
38 | 37 | ralrimivva 3114 |
. . . 4
⊢ (𝑊 ∈ LMod →
∀𝑥 ∈
(Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝐵 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝐵) |
39 | | acsfn1c 17288 |
. . . 4
⊢ ((𝐵 ∈ V ∧ ∀𝑥 ∈
(Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝐵 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝐵) → {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑏 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑏} ∈ (ACS‘𝐵)) |
40 | 30, 38, 39 | sylancr 586 |
. . 3
⊢ (𝑊 ∈ LMod → {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈
(Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑏 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑏} ∈ (ACS‘𝐵)) |
41 | | mreincl 17225 |
. . 3
⊢
(((ACS‘𝐵)
∈ (Moore‘𝒫 𝐵) ∧ (SubGrp‘𝑊) ∈ (ACS‘𝐵) ∧ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑏 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑏} ∈ (ACS‘𝐵)) → ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑏 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑏}) ∈ (ACS‘𝐵)) |
42 | 32, 35, 40, 41 | syl3anc 1369 |
. 2
⊢ (𝑊 ∈ LMod →
((SubGrp‘𝑊) ∩
{𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈
(Base‘(Scalar‘𝑊))∀𝑦 ∈ 𝑏 (𝑥( ·𝑠
‘𝑊)𝑦) ∈ 𝑏}) ∈ (ACS‘𝐵)) |
43 | 29, 42 | eqeltrd 2839 |
1
⊢ (𝑊 ∈ LMod → 𝑆 ∈ (ACS‘𝐵)) |