Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssacs Structured version   Visualization version   GIF version

Theorem lssacs 19741
 Description: Submodules are an algebraic closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypotheses
Ref Expression
lssacs.b 𝐵 = (Base‘𝑊)
lssacs.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssacs (𝑊 ∈ LMod → 𝑆 ∈ (ACS‘𝐵))

Proof of Theorem lssacs
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lssacs.b . . . . . 6 𝐵 = (Base‘𝑊)
2 lssacs.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
31, 2lssss 19710 . . . . 5 (𝑎𝑆𝑎𝐵)
43a1i 11 . . . 4 (𝑊 ∈ LMod → (𝑎𝑆𝑎𝐵))
5 inss2 4191 . . . . . . . 8 ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) ⊆ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}
6 ssrab2 4042 . . . . . . . 8 {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏} ⊆ 𝒫 𝐵
75, 6sstri 3962 . . . . . . 7 ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) ⊆ 𝒫 𝐵
87sseli 3949 . . . . . 6 (𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) → 𝑎 ∈ 𝒫 𝐵)
98elpwid 4533 . . . . 5 (𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) → 𝑎𝐵)
109a1i 11 . . . 4 (𝑊 ∈ LMod → (𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) → 𝑎𝐵))
11 eqid 2824 . . . . . . . . 9 (Scalar‘𝑊) = (Scalar‘𝑊)
12 eqid 2824 . . . . . . . . 9 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
13 eqid 2824 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
1411, 12, 1, 13, 2islss4 19736 . . . . . . . 8 (𝑊 ∈ LMod → (𝑎𝑆 ↔ (𝑎 ∈ (SubGrp‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑎 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎)))
1514adantr 484 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑎𝐵) → (𝑎𝑆 ↔ (𝑎 ∈ (SubGrp‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑎 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎)))
16 velpw 4527 . . . . . . . . . 10 (𝑎 ∈ 𝒫 𝐵𝑎𝐵)
17 eleq2w 2899 . . . . . . . . . . . . 13 (𝑏 = 𝑎 → ((𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏 ↔ (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎))
1817raleqbi1dv 3394 . . . . . . . . . . . 12 (𝑏 = 𝑎 → (∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏 ↔ ∀𝑦𝑎 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎))
1918ralbidv 3192 . . . . . . . . . . 11 (𝑏 = 𝑎 → (∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏 ↔ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑎 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎))
2019elrab3 3667 . . . . . . . . . 10 (𝑎 ∈ 𝒫 𝐵 → (𝑎 ∈ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏} ↔ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑎 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎))
2116, 20sylbir 238 . . . . . . . . 9 (𝑎𝐵 → (𝑎 ∈ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏} ↔ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑎 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎))
2221adantl 485 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑎𝐵) → (𝑎 ∈ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏} ↔ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑎 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎))
2322anbi2d 631 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑎𝐵) → ((𝑎 ∈ (SubGrp‘𝑊) ∧ 𝑎 ∈ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) ↔ (𝑎 ∈ (SubGrp‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑎 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎)))
2415, 23bitr4d 285 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑎𝐵) → (𝑎𝑆 ↔ (𝑎 ∈ (SubGrp‘𝑊) ∧ 𝑎 ∈ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏})))
25 elin 3935 . . . . . 6 (𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) ↔ (𝑎 ∈ (SubGrp‘𝑊) ∧ 𝑎 ∈ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}))
2624, 25syl6bbr 292 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑎𝐵) → (𝑎𝑆𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏})))
2726ex 416 . . . 4 (𝑊 ∈ LMod → (𝑎𝐵 → (𝑎𝑆𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}))))
284, 10, 27pm5.21ndd 384 . . 3 (𝑊 ∈ LMod → (𝑎𝑆𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏})))
2928eqrdv 2822 . 2 (𝑊 ∈ LMod → 𝑆 = ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}))
301fvexi 6677 . . . 4 𝐵 ∈ V
31 mreacs 16931 . . . 4 (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
3230, 31mp1i 13 . . 3 (𝑊 ∈ LMod → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
33 lmodgrp 19643 . . . 4 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
341subgacs 18315 . . . 4 (𝑊 ∈ Grp → (SubGrp‘𝑊) ∈ (ACS‘𝐵))
3533, 34syl 17 . . 3 (𝑊 ∈ LMod → (SubGrp‘𝑊) ∈ (ACS‘𝐵))
361, 11, 13, 12lmodvscl 19653 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝐵) → (𝑥( ·𝑠𝑊)𝑦) ∈ 𝐵)
37363expb 1117 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝐵)) → (𝑥( ·𝑠𝑊)𝑦) ∈ 𝐵)
3837ralrimivva 3186 . . . 4 (𝑊 ∈ LMod → ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝐵 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝐵)
39 acsfn1c 16935 . . . 4 ((𝐵 ∈ V ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝐵 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝐵) → {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏} ∈ (ACS‘𝐵))
4030, 38, 39sylancr 590 . . 3 (𝑊 ∈ LMod → {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏} ∈ (ACS‘𝐵))
41 mreincl 16872 . . 3 (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ (SubGrp‘𝑊) ∈ (ACS‘𝐵) ∧ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏} ∈ (ACS‘𝐵)) → ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) ∈ (ACS‘𝐵))
4232, 35, 40, 41syl3anc 1368 . 2 (𝑊 ∈ LMod → ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) ∈ (ACS‘𝐵))
4329, 42eqeltrd 2916 1 (𝑊 ∈ LMod → 𝑆 ∈ (ACS‘𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∀wral 3133  {crab 3137  Vcvv 3480   ∩ cin 3918   ⊆ wss 3919  𝒫 cpw 4522  ‘cfv 6345  (class class class)co 7151  Basecbs 16485  Scalarcsca 16570   ·𝑠 cvsca 16571  Moorecmre 16855  ACScacs 16858  Grpcgrp 18105  SubGrpcsubg 18275  LModclmod 19636  LSubSpclss 19705 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7577  df-1st 7686  df-2nd 7687  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-1o 8100  df-oadd 8104  df-er 8287  df-en 8508  df-dom 8509  df-sdom 8510  df-fin 8511  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11637  df-2 11699  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-0g 16717  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-mgp 19242  df-ur 19254  df-ring 19301  df-lmod 19638  df-lss 19706 This theorem is referenced by:  lssacsex  19918  lidlacs  19996
 Copyright terms: Public domain W3C validator