Step | Hyp | Ref
| Expression |
1 | | lssacs.b |
. . . . . 6
β’ π΅ = (Baseβπ) |
2 | | lssacs.s |
. . . . . 6
β’ π = (LSubSpβπ) |
3 | 1, 2 | lssss 20539 |
. . . . 5
β’ (π β π β π β π΅) |
4 | 3 | a1i 11 |
. . . 4
β’ (π β LMod β (π β π β π β π΅)) |
5 | | inss2 4228 |
. . . . . . . 8
β’
((SubGrpβπ)
β© {π β π«
π΅ β£ βπ₯ β
(Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π}) β {π β π« π΅ β£ βπ₯ β (Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π} |
6 | | ssrab2 4076 |
. . . . . . . 8
β’ {π β π« π΅ β£ βπ₯ β
(Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π} β π« π΅ |
7 | 5, 6 | sstri 3990 |
. . . . . . 7
β’
((SubGrpβπ)
β© {π β π«
π΅ β£ βπ₯ β
(Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π}) β π« π΅ |
8 | 7 | sseli 3977 |
. . . . . 6
β’ (π β ((SubGrpβπ) β© {π β π« π΅ β£ βπ₯ β (Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π}) β π β π« π΅) |
9 | 8 | elpwid 4610 |
. . . . 5
β’ (π β ((SubGrpβπ) β© {π β π« π΅ β£ βπ₯ β (Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π}) β π β π΅) |
10 | 9 | a1i 11 |
. . . 4
β’ (π β LMod β (π β ((SubGrpβπ) β© {π β π« π΅ β£ βπ₯ β (Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π}) β π β π΅)) |
11 | | eqid 2732 |
. . . . . . . . 9
β’
(Scalarβπ) =
(Scalarβπ) |
12 | | eqid 2732 |
. . . . . . . . 9
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
13 | | eqid 2732 |
. . . . . . . . 9
β’ (
Β·π βπ) = ( Β·π
βπ) |
14 | 11, 12, 1, 13, 2 | islss4 20565 |
. . . . . . . 8
β’ (π β LMod β (π β π β (π β (SubGrpβπ) β§ βπ₯ β (Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π))) |
15 | 14 | adantr 481 |
. . . . . . 7
β’ ((π β LMod β§ π β π΅) β (π β π β (π β (SubGrpβπ) β§ βπ₯ β (Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π))) |
16 | | velpw 4606 |
. . . . . . . . . 10
β’ (π β π« π΅ β π β π΅) |
17 | | eleq2w 2817 |
. . . . . . . . . . . . 13
β’ (π = π β ((π₯( Β·π
βπ)π¦) β π β (π₯( Β·π
βπ)π¦) β π)) |
18 | 17 | raleqbi1dv 3333 |
. . . . . . . . . . . 12
β’ (π = π β (βπ¦ β π (π₯( Β·π
βπ)π¦) β π β βπ¦ β π (π₯( Β·π
βπ)π¦) β π)) |
19 | 18 | ralbidv 3177 |
. . . . . . . . . . 11
β’ (π = π β (βπ₯ β (Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π β βπ₯ β (Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π)) |
20 | 19 | elrab3 3683 |
. . . . . . . . . 10
β’ (π β π« π΅ β (π β {π β π« π΅ β£ βπ₯ β (Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π} β βπ₯ β (Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π)) |
21 | 16, 20 | sylbir 234 |
. . . . . . . . 9
β’ (π β π΅ β (π β {π β π« π΅ β£ βπ₯ β (Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π} β βπ₯ β (Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π)) |
22 | 21 | adantl 482 |
. . . . . . . 8
β’ ((π β LMod β§ π β π΅) β (π β {π β π« π΅ β£ βπ₯ β (Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π} β βπ₯ β (Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π)) |
23 | 22 | anbi2d 629 |
. . . . . . 7
β’ ((π β LMod β§ π β π΅) β ((π β (SubGrpβπ) β§ π β {π β π« π΅ β£ βπ₯ β (Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π}) β (π β (SubGrpβπ) β§ βπ₯ β (Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π))) |
24 | 15, 23 | bitr4d 281 |
. . . . . 6
β’ ((π β LMod β§ π β π΅) β (π β π β (π β (SubGrpβπ) β§ π β {π β π« π΅ β£ βπ₯ β (Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π}))) |
25 | | elin 3963 |
. . . . . 6
β’ (π β ((SubGrpβπ) β© {π β π« π΅ β£ βπ₯ β (Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π}) β (π β (SubGrpβπ) β§ π β {π β π« π΅ β£ βπ₯ β (Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π})) |
26 | 24, 25 | bitr4di 288 |
. . . . 5
β’ ((π β LMod β§ π β π΅) β (π β π β π β ((SubGrpβπ) β© {π β π« π΅ β£ βπ₯ β (Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π}))) |
27 | 26 | ex 413 |
. . . 4
β’ (π β LMod β (π β π΅ β (π β π β π β ((SubGrpβπ) β© {π β π« π΅ β£ βπ₯ β (Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π})))) |
28 | 4, 10, 27 | pm5.21ndd 380 |
. . 3
β’ (π β LMod β (π β π β π β ((SubGrpβπ) β© {π β π« π΅ β£ βπ₯ β (Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π}))) |
29 | 28 | eqrdv 2730 |
. 2
β’ (π β LMod β π = ((SubGrpβπ) β© {π β π« π΅ β£ βπ₯ β (Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π})) |
30 | 1 | fvexi 6902 |
. . . 4
β’ π΅ β V |
31 | | mreacs 17598 |
. . . 4
β’ (π΅ β V β
(ACSβπ΅) β
(Mooreβπ« π΅)) |
32 | 30, 31 | mp1i 13 |
. . 3
β’ (π β LMod β
(ACSβπ΅) β
(Mooreβπ« π΅)) |
33 | | lmodgrp 20470 |
. . . 4
β’ (π β LMod β π β Grp) |
34 | 1 | subgacs 19035 |
. . . 4
β’ (π β Grp β
(SubGrpβπ) β
(ACSβπ΅)) |
35 | 33, 34 | syl 17 |
. . 3
β’ (π β LMod β
(SubGrpβπ) β
(ACSβπ΅)) |
36 | 1, 11, 13, 12 | lmodvscl 20481 |
. . . . . 6
β’ ((π β LMod β§ π₯ β
(Baseβ(Scalarβπ)) β§ π¦ β π΅) β (π₯( Β·π
βπ)π¦) β π΅) |
37 | 36 | 3expb 1120 |
. . . . 5
β’ ((π β LMod β§ (π₯ β
(Baseβ(Scalarβπ)) β§ π¦ β π΅)) β (π₯( Β·π
βπ)π¦) β π΅) |
38 | 37 | ralrimivva 3200 |
. . . 4
β’ (π β LMod β
βπ₯ β
(Baseβ(Scalarβπ))βπ¦ β π΅ (π₯( Β·π
βπ)π¦) β π΅) |
39 | | acsfn1c 17602 |
. . . 4
β’ ((π΅ β V β§ βπ₯ β
(Baseβ(Scalarβπ))βπ¦ β π΅ (π₯( Β·π
βπ)π¦) β π΅) β {π β π« π΅ β£ βπ₯ β (Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π} β (ACSβπ΅)) |
40 | 30, 38, 39 | sylancr 587 |
. . 3
β’ (π β LMod β {π β π« π΅ β£ βπ₯ β
(Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π} β (ACSβπ΅)) |
41 | | mreincl 17539 |
. . 3
β’
(((ACSβπ΅)
β (Mooreβπ« π΅) β§ (SubGrpβπ) β (ACSβπ΅) β§ {π β π« π΅ β£ βπ₯ β (Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π} β (ACSβπ΅)) β ((SubGrpβπ) β© {π β π« π΅ β£ βπ₯ β (Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π}) β (ACSβπ΅)) |
42 | 32, 35, 40, 41 | syl3anc 1371 |
. 2
β’ (π β LMod β
((SubGrpβπ) β©
{π β π« π΅ β£ βπ₯ β
(Baseβ(Scalarβπ))βπ¦ β π (π₯( Β·π
βπ)π¦) β π}) β (ACSβπ΅)) |
43 | 29, 42 | eqeltrd 2833 |
1
β’ (π β LMod β π β (ACSβπ΅)) |