MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssacs Structured version   Visualization version   GIF version

Theorem lssacs 20922
Description: Submodules are an algebraic closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypotheses
Ref Expression
lssacs.b 𝐵 = (Base‘𝑊)
lssacs.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssacs (𝑊 ∈ LMod → 𝑆 ∈ (ACS‘𝐵))

Proof of Theorem lssacs
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lssacs.b . . . . . 6 𝐵 = (Base‘𝑊)
2 lssacs.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
31, 2lssss 20891 . . . . 5 (𝑎𝑆𝑎𝐵)
43a1i 11 . . . 4 (𝑊 ∈ LMod → (𝑎𝑆𝑎𝐵))
5 inss2 4213 . . . . . . . 8 ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) ⊆ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}
6 ssrab2 4055 . . . . . . . 8 {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏} ⊆ 𝒫 𝐵
75, 6sstri 3968 . . . . . . 7 ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) ⊆ 𝒫 𝐵
87sseli 3954 . . . . . 6 (𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) → 𝑎 ∈ 𝒫 𝐵)
98elpwid 4584 . . . . 5 (𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) → 𝑎𝐵)
109a1i 11 . . . 4 (𝑊 ∈ LMod → (𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) → 𝑎𝐵))
11 eqid 2735 . . . . . . . . 9 (Scalar‘𝑊) = (Scalar‘𝑊)
12 eqid 2735 . . . . . . . . 9 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
13 eqid 2735 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
1411, 12, 1, 13, 2islss4 20917 . . . . . . . 8 (𝑊 ∈ LMod → (𝑎𝑆 ↔ (𝑎 ∈ (SubGrp‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑎 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎)))
1514adantr 480 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑎𝐵) → (𝑎𝑆 ↔ (𝑎 ∈ (SubGrp‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑎 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎)))
16 velpw 4580 . . . . . . . . . 10 (𝑎 ∈ 𝒫 𝐵𝑎𝐵)
17 eleq2w 2818 . . . . . . . . . . . . 13 (𝑏 = 𝑎 → ((𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏 ↔ (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎))
1817raleqbi1dv 3317 . . . . . . . . . . . 12 (𝑏 = 𝑎 → (∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏 ↔ ∀𝑦𝑎 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎))
1918ralbidv 3163 . . . . . . . . . . 11 (𝑏 = 𝑎 → (∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏 ↔ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑎 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎))
2019elrab3 3672 . . . . . . . . . 10 (𝑎 ∈ 𝒫 𝐵 → (𝑎 ∈ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏} ↔ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑎 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎))
2116, 20sylbir 235 . . . . . . . . 9 (𝑎𝐵 → (𝑎 ∈ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏} ↔ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑎 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎))
2221adantl 481 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑎𝐵) → (𝑎 ∈ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏} ↔ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑎 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎))
2322anbi2d 630 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑎𝐵) → ((𝑎 ∈ (SubGrp‘𝑊) ∧ 𝑎 ∈ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) ↔ (𝑎 ∈ (SubGrp‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑎 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎)))
2415, 23bitr4d 282 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑎𝐵) → (𝑎𝑆 ↔ (𝑎 ∈ (SubGrp‘𝑊) ∧ 𝑎 ∈ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏})))
25 elin 3942 . . . . . 6 (𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) ↔ (𝑎 ∈ (SubGrp‘𝑊) ∧ 𝑎 ∈ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}))
2624, 25bitr4di 289 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑎𝐵) → (𝑎𝑆𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏})))
2726ex 412 . . . 4 (𝑊 ∈ LMod → (𝑎𝐵 → (𝑎𝑆𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}))))
284, 10, 27pm5.21ndd 379 . . 3 (𝑊 ∈ LMod → (𝑎𝑆𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏})))
2928eqrdv 2733 . 2 (𝑊 ∈ LMod → 𝑆 = ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}))
301fvexi 6889 . . . 4 𝐵 ∈ V
31 mreacs 17668 . . . 4 (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
3230, 31mp1i 13 . . 3 (𝑊 ∈ LMod → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
33 lmodgrp 20822 . . . 4 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
341subgacs 19142 . . . 4 (𝑊 ∈ Grp → (SubGrp‘𝑊) ∈ (ACS‘𝐵))
3533, 34syl 17 . . 3 (𝑊 ∈ LMod → (SubGrp‘𝑊) ∈ (ACS‘𝐵))
361, 11, 13, 12lmodvscl 20833 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝐵) → (𝑥( ·𝑠𝑊)𝑦) ∈ 𝐵)
37363expb 1120 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝐵)) → (𝑥( ·𝑠𝑊)𝑦) ∈ 𝐵)
3837ralrimivva 3187 . . . 4 (𝑊 ∈ LMod → ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝐵 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝐵)
39 acsfn1c 17672 . . . 4 ((𝐵 ∈ V ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝐵 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝐵) → {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏} ∈ (ACS‘𝐵))
4030, 38, 39sylancr 587 . . 3 (𝑊 ∈ LMod → {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏} ∈ (ACS‘𝐵))
41 mreincl 17609 . . 3 (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ (SubGrp‘𝑊) ∈ (ACS‘𝐵) ∧ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏} ∈ (ACS‘𝐵)) → ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) ∈ (ACS‘𝐵))
4232, 35, 40, 41syl3anc 1373 . 2 (𝑊 ∈ LMod → ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) ∈ (ACS‘𝐵))
4329, 42eqeltrd 2834 1 (𝑊 ∈ LMod → 𝑆 ∈ (ACS‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  {crab 3415  Vcvv 3459  cin 3925  wss 3926  𝒫 cpw 4575  cfv 6530  (class class class)co 7403  Basecbs 17226  Scalarcsca 17272   ·𝑠 cvsca 17273  Moorecmre 17592  ACScacs 17595  Grpcgrp 18914  SubGrpcsubg 19101  LModclmod 20815  LSubSpclss 20886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-0g 17453  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-subg 19104  df-mgp 20099  df-ur 20140  df-ring 20193  df-lmod 20817  df-lss 20887
This theorem is referenced by:  lssacsex  21103  lidlacs  21193
  Copyright terms: Public domain W3C validator