MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgredgleordALT Structured version   Visualization version   GIF version

Theorem usgredgleordALT 28224
Description: Alternate proof for usgredgleord 28223 based on usgriedgleord 28218. In a simple graph the number of edges which contain a given vertex is not greater than the number of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.) (Proof shortened by AV, 5-May-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
usgredgleord.v 𝑉 = (Vtx‘𝐺)
usgredgleord.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
usgredgleordALT ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (♯‘{𝑒𝐸𝑁𝑒}) ≤ (♯‘𝑉))
Distinct variable groups:   𝑒,𝐸   𝑒,𝑁
Allowed substitution hints:   𝐺(𝑒)   𝑉(𝑒)

Proof of Theorem usgredgleordALT
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6856 . . . . . 6 (iEdg‘𝐺) ∈ V
21dmex 7849 . . . . 5 dom (iEdg‘𝐺) ∈ V
32rabex 5290 . . . 4 {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} ∈ V
43a1i 11 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} ∈ V)
5 usgredgleord.e . . . 4 𝐸 = (Edg‘𝐺)
6 eqid 2733 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
7 usgredgleord.v . . . 4 𝑉 = (Vtx‘𝐺)
8 eqid 2733 . . . 4 {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}
9 eleq2w 2818 . . . . 5 (𝑒 = 𝑓 → (𝑁𝑒𝑁𝑓))
109cbvrabv 3416 . . . 4 {𝑒𝐸𝑁𝑒} = {𝑓𝐸𝑁𝑓}
11 eqid 2733 . . . 4 (𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} ↦ ((iEdg‘𝐺)‘𝑦)) = (𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} ↦ ((iEdg‘𝐺)‘𝑦))
125, 6, 7, 8, 10, 11usgredgedg 28220 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} ↦ ((iEdg‘𝐺)‘𝑦)):{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}–1-1-onto→{𝑒𝐸𝑁𝑒})
134, 12hasheqf1od 14259 . 2 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) = (♯‘{𝑒𝐸𝑁𝑒}))
147, 6usgriedgleord 28218 . 2 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) ≤ (♯‘𝑉))
1513, 14eqbrtrrd 5130 1 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (♯‘{𝑒𝐸𝑁𝑒}) ≤ (♯‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {crab 3406  Vcvv 3444   class class class wbr 5106  cmpt 5189  dom cdm 5634  cfv 6497  cle 11195  chash 14236  Vtxcvtx 27989  iEdgciedg 27990  Edgcedg 28040  USGraphcusgr 28142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-2o 8414  df-oadd 8417  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-dju 9842  df-card 9880  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-n0 12419  df-xnn0 12491  df-z 12505  df-uz 12769  df-fz 13431  df-hash 14237  df-edg 28041  df-uhgr 28051  df-ushgr 28052  df-umgr 28076  df-uspgr 28143  df-usgr 28144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator