![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgredgleordALT | Structured version Visualization version GIF version |
Description: Alternate proof for usgredgleord 29102 based on usgriedgleord 29097. In a simple graph the number of edges which contain a given vertex is not greater than the number of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.) (Proof shortened by AV, 5-May-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
usgredgleord.v | ⊢ 𝑉 = (Vtx‘𝐺) |
usgredgleord.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
usgredgleordALT | ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) ≤ (♯‘𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6907 | . . . . . 6 ⊢ (iEdg‘𝐺) ∈ V | |
2 | 1 | dmex 7915 | . . . . 5 ⊢ dom (iEdg‘𝐺) ∈ V |
3 | 2 | rabex 5334 | . . . 4 ⊢ {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} ∈ V |
4 | 3 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} ∈ V) |
5 | usgredgleord.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
6 | eqid 2725 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
7 | usgredgleord.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
8 | eqid 2725 | . . . 4 ⊢ {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} | |
9 | eleq2w 2809 | . . . . 5 ⊢ (𝑒 = 𝑓 → (𝑁 ∈ 𝑒 ↔ 𝑁 ∈ 𝑓)) | |
10 | 9 | cbvrabv 3430 | . . . 4 ⊢ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} = {𝑓 ∈ 𝐸 ∣ 𝑁 ∈ 𝑓} |
11 | eqid 2725 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} ↦ ((iEdg‘𝐺)‘𝑦)) = (𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} ↦ ((iEdg‘𝐺)‘𝑦)) | |
12 | 5, 6, 7, 8, 10, 11 | usgredgedg 29099 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} ↦ ((iEdg‘𝐺)‘𝑦)):{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) |
13 | 4, 12 | hasheqf1od 14344 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒})) |
14 | 7, 6 | usgriedgleord 29097 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) ≤ (♯‘𝑉)) |
15 | 13, 14 | eqbrtrrd 5172 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) ≤ (♯‘𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3419 Vcvv 3463 class class class wbr 5148 ↦ cmpt 5231 dom cdm 5677 ‘cfv 6547 ≤ cle 11279 ♯chash 14321 Vtxcvtx 28865 iEdgciedg 28866 Edgcedg 28916 USGraphcusgr 29018 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-dju 9924 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-n0 12503 df-xnn0 12575 df-z 12589 df-uz 12853 df-fz 13517 df-hash 14322 df-edg 28917 df-uhgr 28927 df-ushgr 28928 df-umgr 28952 df-uspgr 29019 df-usgr 29020 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |