MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdushgrfvedglem Structured version   Visualization version   GIF version

Theorem vtxdushgrfvedglem 29525
Description: Lemma for vtxdushgrfvedg 29526 and vtxdusgrfvedg 29527. (Contributed by AV, 12-Dec-2020.) (Proof shortened by AV, 5-May-2021.)
Hypotheses
Ref Expression
vtxdushgrfvedg.v 𝑉 = (Vtx‘𝐺)
vtxdushgrfvedg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
vtxdushgrfvedglem ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) = (♯‘{𝑒𝐸𝑈𝑒}))
Distinct variable groups:   𝑒,𝐸,𝑖   𝑒,𝐺,𝑖   𝑈,𝑒,𝑖   𝑒,𝑉,𝑖

Proof of Theorem vtxdushgrfvedglem
Dummy variables 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6933 . . . . 5 (iEdg‘𝐺) ∈ V
21dmex 7949 . . . 4 dom (iEdg‘𝐺) ∈ V
32rabex 5357 . . 3 {𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)} ∈ V
43a1i 11 . 2 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → {𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)} ∈ V)
5 vtxdushgrfvedg.e . . 3 𝐸 = (Edg‘𝐺)
6 eqid 2740 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
7 vtxdushgrfvedg.v . . 3 𝑉 = (Vtx‘𝐺)
8 eqid 2740 . . 3 {𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)} = {𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}
9 eleq2w 2828 . . . 4 (𝑒 = 𝑐 → (𝑈𝑒𝑈𝑐))
109cbvrabv 3454 . . 3 {𝑒𝐸𝑈𝑒} = {𝑐𝐸𝑈𝑐}
11 eqid 2740 . . 3 (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)} ↦ ((iEdg‘𝐺)‘𝑥)) = (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)} ↦ ((iEdg‘𝐺)‘𝑥))
125, 6, 7, 8, 10, 11ushgredgedg 29264 . 2 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)} ↦ ((iEdg‘𝐺)‘𝑥)):{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}–1-1-onto→{𝑒𝐸𝑈𝑒})
134, 12hasheqf1od 14402 1 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) = (♯‘{𝑒𝐸𝑈𝑒}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  cmpt 5249  dom cdm 5700  cfv 6573  chash 14379  Vtxcvtx 29031  iEdgciedg 29032  Edgcedg 29082  USHGraphcushgr 29092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-hash 14380  df-edg 29083  df-uhgr 29093  df-ushgr 29094
This theorem is referenced by:  vtxdushgrfvedg  29526  vtxdusgrfvedg  29527
  Copyright terms: Public domain W3C validator