Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtxdushgrfvedglem | Structured version Visualization version GIF version |
Description: Lemma for vtxdushgrfvedg 27906 and vtxdusgrfvedg 27907. (Contributed by AV, 12-Dec-2020.) (Proof shortened by AV, 5-May-2021.) |
Ref | Expression |
---|---|
vtxdushgrfvedg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdushgrfvedg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
vtxdushgrfvedglem | ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6817 | . . . . 5 ⊢ (iEdg‘𝐺) ∈ V | |
2 | 1 | dmex 7790 | . . . 4 ⊢ dom (iEdg‘𝐺) ∈ V |
3 | 2 | rabex 5265 | . . 3 ⊢ {𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)} ∈ V |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → {𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)} ∈ V) |
5 | vtxdushgrfvedg.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
6 | eqid 2736 | . . 3 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
7 | vtxdushgrfvedg.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
8 | eqid 2736 | . . 3 ⊢ {𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)} = {𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)} | |
9 | eleq2w 2820 | . . . 4 ⊢ (𝑒 = 𝑐 → (𝑈 ∈ 𝑒 ↔ 𝑈 ∈ 𝑐)) | |
10 | 9 | cbvrabv 3433 | . . 3 ⊢ {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} = {𝑐 ∈ 𝐸 ∣ 𝑈 ∈ 𝑐} |
11 | eqid 2736 | . . 3 ⊢ (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)} ↦ ((iEdg‘𝐺)‘𝑥)) = (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)} ↦ ((iEdg‘𝐺)‘𝑥)) | |
12 | 5, 6, 7, 8, 10, 11 | ushgredgedg 27645 | . 2 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)} ↦ ((iEdg‘𝐺)‘𝑥)):{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒}) |
13 | 4, 12 | hasheqf1od 14117 | 1 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 {crab 3303 Vcvv 3437 ↦ cmpt 5164 dom cdm 5600 ‘cfv 6458 ♯chash 14094 Vtxcvtx 27415 iEdgciedg 27416 Edgcedg 27466 USHGraphcushgr 27476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-card 9745 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-n0 12284 df-z 12370 df-uz 12633 df-hash 14095 df-edg 27467 df-uhgr 27477 df-ushgr 27478 |
This theorem is referenced by: vtxdushgrfvedg 27906 vtxdusgrfvedg 27907 |
Copyright terms: Public domain | W3C validator |