MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem1c Structured version   Visualization version   GIF version

Theorem cantnflem1c 9572
Description: Lemma for cantnf 9578. (Contributed by Mario Carneiro, 4-Jun-2015.) (Revised by AV, 2-Jul-2019.) (Proof shortened by AV, 4-Apr-2020.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
oemapval.f (𝜑𝐹𝑆)
oemapval.g (𝜑𝐺𝑆)
oemapvali.r (𝜑𝐹𝑇𝐺)
oemapvali.x 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
cantnflem1.o 𝑂 = OrdIso( E , (𝐺 supp ∅))
Assertion
Ref Expression
cantnflem1c ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑥 ∈ (𝐺 supp ∅))
Distinct variable groups:   𝑢,𝑐,𝑤,𝑥,𝑦,𝑧,𝐵   𝐴,𝑐,𝑢,𝑤,𝑥,𝑦,𝑧   𝑇,𝑐,𝑢   𝑢,𝐹,𝑤,𝑥,𝑦,𝑧   𝑆,𝑐,𝑢,𝑥,𝑦,𝑧   𝐺,𝑐,𝑢,𝑤,𝑥,𝑦,𝑧   𝑢,𝑂,𝑤,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧   𝑢,𝑋,𝑤,𝑥,𝑦,𝑧   𝐹,𝑐   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑂(𝑐)   𝑋(𝑐)

Proof of Theorem cantnflem1c
StepHypRef Expression
1 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
21ad3antrrr 730 . 2 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝐵 ∈ On)
3 simplr 768 . 2 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑥𝐵)
4 oemapval.g . . . . . 6 (𝜑𝐺𝑆)
5 cantnfs.s . . . . . . 7 𝑆 = dom (𝐴 CNF 𝐵)
6 cantnfs.a . . . . . . 7 (𝜑𝐴 ∈ On)
75, 6, 1cantnfs 9551 . . . . . 6 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
84, 7mpbid 232 . . . . 5 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
98simpld 494 . . . 4 (𝜑𝐺:𝐵𝐴)
109ffnd 6647 . . 3 (𝜑𝐺 Fn 𝐵)
1110ad3antrrr 730 . 2 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝐺 Fn 𝐵)
12 oemapval.t . . . . . . 7 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
13 oemapval.f . . . . . . 7 (𝜑𝐹𝑆)
14 oemapvali.r . . . . . . 7 (𝜑𝐹𝑇𝐺)
15 oemapvali.x . . . . . . 7 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
16 cantnflem1.o . . . . . . 7 𝑂 = OrdIso( E , (𝐺 supp ∅))
175, 6, 1, 12, 13, 4, 14, 15, 16cantnflem1b 9571 . . . . . 6 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝑋 ⊆ (𝑂𝑢))
1817ad2antrr 726 . . . . 5 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑋 ⊆ (𝑂𝑢))
19 simprr 772 . . . . 5 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝑂𝑢) ∈ 𝑥)
205, 6, 1, 12, 13, 4, 14, 15oemapvali 9569 . . . . . . . . 9 (𝜑 → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋) ∧ ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤))))
2120simp1d 1142 . . . . . . . 8 (𝜑𝑋𝐵)
22 onelon 6326 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑋𝐵) → 𝑋 ∈ On)
231, 21, 22syl2anc 584 . . . . . . 7 (𝜑𝑋 ∈ On)
2423ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑋 ∈ On)
25 onss 7713 . . . . . . . . 9 (𝐵 ∈ On → 𝐵 ⊆ On)
261, 25syl 17 . . . . . . . 8 (𝜑𝐵 ⊆ On)
2726sselda 3929 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑥 ∈ On)
2827ad4ant13 751 . . . . . 6 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑥 ∈ On)
29 ontr2 6349 . . . . . 6 ((𝑋 ∈ On ∧ 𝑥 ∈ On) → ((𝑋 ⊆ (𝑂𝑢) ∧ (𝑂𝑢) ∈ 𝑥) → 𝑋𝑥))
3024, 28, 29syl2anc 584 . . . . 5 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → ((𝑋 ⊆ (𝑂𝑢) ∧ (𝑂𝑢) ∈ 𝑥) → 𝑋𝑥))
3118, 19, 30mp2and 699 . . . 4 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑋𝑥)
32 eleq2w 2815 . . . . . 6 (𝑤 = 𝑥 → (𝑋𝑤𝑋𝑥))
33 fveq2 6817 . . . . . . 7 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
34 fveq2 6817 . . . . . . 7 (𝑤 = 𝑥 → (𝐺𝑤) = (𝐺𝑥))
3533, 34eqeq12d 2747 . . . . . 6 (𝑤 = 𝑥 → ((𝐹𝑤) = (𝐺𝑤) ↔ (𝐹𝑥) = (𝐺𝑥)))
3632, 35imbi12d 344 . . . . 5 (𝑤 = 𝑥 → ((𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)) ↔ (𝑋𝑥 → (𝐹𝑥) = (𝐺𝑥))))
3720simp3d 1144 . . . . . 6 (𝜑 → ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)))
3837ad3antrrr 730 . . . . 5 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)))
3936, 38, 3rspcdva 3573 . . . 4 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝑋𝑥 → (𝐹𝑥) = (𝐺𝑥)))
4031, 39mpd 15 . . 3 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝐹𝑥) = (𝐺𝑥))
41 simprl 770 . . 3 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝐹𝑥) ≠ ∅)
4240, 41eqnetrrd 2996 . 2 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝐺𝑥) ≠ ∅)
43 fvn0elsupp 8105 . 2 (((𝐵 ∈ On ∧ 𝑥𝐵) ∧ (𝐺 Fn 𝐵 ∧ (𝐺𝑥) ≠ ∅)) → 𝑥 ∈ (𝐺 supp ∅))
442, 3, 11, 42, 43syl22anc 838 1 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑥 ∈ (𝐺 supp ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  wss 3897  c0 4278   cuni 4854   class class class wbr 5086  {copab 5148   E cep 5510  ccnv 5610  dom cdm 5611  Oncon0 6301  suc csuc 6303   Fn wfn 6471  wf 6472  cfv 6476  (class class class)co 7341   supp csupp 8085   finSupp cfsupp 9240  OrdIsocoi 9390   CNF ccnf 9546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-seqom 8362  df-1o 8380  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-oi 9391  df-cnf 9547
This theorem is referenced by:  cantnflem1  9574
  Copyright terms: Public domain W3C validator