MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem1c Structured version   Visualization version   GIF version

Theorem cantnflem1c 9616
Description: Lemma for cantnf 9622. (Contributed by Mario Carneiro, 4-Jun-2015.) (Revised by AV, 2-Jul-2019.) (Proof shortened by AV, 4-Apr-2020.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
oemapval.f (𝜑𝐹𝑆)
oemapval.g (𝜑𝐺𝑆)
oemapvali.r (𝜑𝐹𝑇𝐺)
oemapvali.x 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
cantnflem1.o 𝑂 = OrdIso( E , (𝐺 supp ∅))
Assertion
Ref Expression
cantnflem1c ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑥 ∈ (𝐺 supp ∅))
Distinct variable groups:   𝑢,𝑐,𝑤,𝑥,𝑦,𝑧,𝐵   𝐴,𝑐,𝑢,𝑤,𝑥,𝑦,𝑧   𝑇,𝑐,𝑢   𝑢,𝐹,𝑤,𝑥,𝑦,𝑧   𝑆,𝑐,𝑢,𝑥,𝑦,𝑧   𝐺,𝑐,𝑢,𝑤,𝑥,𝑦,𝑧   𝑢,𝑂,𝑤,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧   𝑢,𝑋,𝑤,𝑥,𝑦,𝑧   𝐹,𝑐   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑂(𝑐)   𝑋(𝑐)

Proof of Theorem cantnflem1c
StepHypRef Expression
1 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
21ad3antrrr 730 . 2 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝐵 ∈ On)
3 simplr 768 . 2 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑥𝐵)
4 oemapval.g . . . . . 6 (𝜑𝐺𝑆)
5 cantnfs.s . . . . . . 7 𝑆 = dom (𝐴 CNF 𝐵)
6 cantnfs.a . . . . . . 7 (𝜑𝐴 ∈ On)
75, 6, 1cantnfs 9595 . . . . . 6 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
84, 7mpbid 232 . . . . 5 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
98simpld 494 . . . 4 (𝜑𝐺:𝐵𝐴)
109ffnd 6671 . . 3 (𝜑𝐺 Fn 𝐵)
1110ad3antrrr 730 . 2 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝐺 Fn 𝐵)
12 oemapval.t . . . . . . 7 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
13 oemapval.f . . . . . . 7 (𝜑𝐹𝑆)
14 oemapvali.r . . . . . . 7 (𝜑𝐹𝑇𝐺)
15 oemapvali.x . . . . . . 7 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
16 cantnflem1.o . . . . . . 7 𝑂 = OrdIso( E , (𝐺 supp ∅))
175, 6, 1, 12, 13, 4, 14, 15, 16cantnflem1b 9615 . . . . . 6 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝑋 ⊆ (𝑂𝑢))
1817ad2antrr 726 . . . . 5 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑋 ⊆ (𝑂𝑢))
19 simprr 772 . . . . 5 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝑂𝑢) ∈ 𝑥)
205, 6, 1, 12, 13, 4, 14, 15oemapvali 9613 . . . . . . . . 9 (𝜑 → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋) ∧ ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤))))
2120simp1d 1142 . . . . . . . 8 (𝜑𝑋𝐵)
22 onelon 6345 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑋𝐵) → 𝑋 ∈ On)
231, 21, 22syl2anc 584 . . . . . . 7 (𝜑𝑋 ∈ On)
2423ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑋 ∈ On)
25 onss 7741 . . . . . . . . 9 (𝐵 ∈ On → 𝐵 ⊆ On)
261, 25syl 17 . . . . . . . 8 (𝜑𝐵 ⊆ On)
2726sselda 3943 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑥 ∈ On)
2827ad4ant13 751 . . . . . 6 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑥 ∈ On)
29 ontr2 6368 . . . . . 6 ((𝑋 ∈ On ∧ 𝑥 ∈ On) → ((𝑋 ⊆ (𝑂𝑢) ∧ (𝑂𝑢) ∈ 𝑥) → 𝑋𝑥))
3024, 28, 29syl2anc 584 . . . . 5 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → ((𝑋 ⊆ (𝑂𝑢) ∧ (𝑂𝑢) ∈ 𝑥) → 𝑋𝑥))
3118, 19, 30mp2and 699 . . . 4 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑋𝑥)
32 eleq2w 2812 . . . . . 6 (𝑤 = 𝑥 → (𝑋𝑤𝑋𝑥))
33 fveq2 6840 . . . . . . 7 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
34 fveq2 6840 . . . . . . 7 (𝑤 = 𝑥 → (𝐺𝑤) = (𝐺𝑥))
3533, 34eqeq12d 2745 . . . . . 6 (𝑤 = 𝑥 → ((𝐹𝑤) = (𝐺𝑤) ↔ (𝐹𝑥) = (𝐺𝑥)))
3632, 35imbi12d 344 . . . . 5 (𝑤 = 𝑥 → ((𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)) ↔ (𝑋𝑥 → (𝐹𝑥) = (𝐺𝑥))))
3720simp3d 1144 . . . . . 6 (𝜑 → ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)))
3837ad3antrrr 730 . . . . 5 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)))
3936, 38, 3rspcdva 3586 . . . 4 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝑋𝑥 → (𝐹𝑥) = (𝐺𝑥)))
4031, 39mpd 15 . . 3 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝐹𝑥) = (𝐺𝑥))
41 simprl 770 . . 3 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝐹𝑥) ≠ ∅)
4240, 41eqnetrrd 2993 . 2 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝐺𝑥) ≠ ∅)
43 fvn0elsupp 8136 . 2 (((𝐵 ∈ On ∧ 𝑥𝐵) ∧ (𝐺 Fn 𝐵 ∧ (𝐺𝑥) ≠ ∅)) → 𝑥 ∈ (𝐺 supp ∅))
442, 3, 11, 42, 43syl22anc 838 1 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑥 ∈ (𝐺 supp ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  wss 3911  c0 4292   cuni 4867   class class class wbr 5102  {copab 5164   E cep 5530  ccnv 5630  dom cdm 5631  Oncon0 6320  suc csuc 6322   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369   supp csupp 8116   finSupp cfsupp 9288  OrdIsocoi 9438   CNF ccnf 9590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-seqom 8393  df-1o 8411  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-oi 9439  df-cnf 9591
This theorem is referenced by:  cantnflem1  9618
  Copyright terms: Public domain W3C validator