MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem1c Structured version   Visualization version   GIF version

Theorem cantnflem1c 9623
Description: Lemma for cantnf 9629. (Contributed by Mario Carneiro, 4-Jun-2015.) (Revised by AV, 2-Jul-2019.) (Proof shortened by AV, 4-Apr-2020.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
oemapval.f (𝜑𝐹𝑆)
oemapval.g (𝜑𝐺𝑆)
oemapvali.r (𝜑𝐹𝑇𝐺)
oemapvali.x 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
cantnflem1.o 𝑂 = OrdIso( E , (𝐺 supp ∅))
Assertion
Ref Expression
cantnflem1c ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑥 ∈ (𝐺 supp ∅))
Distinct variable groups:   𝑢,𝑐,𝑤,𝑥,𝑦,𝑧,𝐵   𝐴,𝑐,𝑢,𝑤,𝑥,𝑦,𝑧   𝑇,𝑐,𝑢   𝑢,𝐹,𝑤,𝑥,𝑦,𝑧   𝑆,𝑐,𝑢,𝑥,𝑦,𝑧   𝐺,𝑐,𝑢,𝑤,𝑥,𝑦,𝑧   𝑢,𝑂,𝑤,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧   𝑢,𝑋,𝑤,𝑥,𝑦,𝑧   𝐹,𝑐   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑂(𝑐)   𝑋(𝑐)

Proof of Theorem cantnflem1c
StepHypRef Expression
1 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
21ad3antrrr 728 . 2 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝐵 ∈ On)
3 simplr 767 . 2 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑥𝐵)
4 oemapval.g . . . . . 6 (𝜑𝐺𝑆)
5 cantnfs.s . . . . . . 7 𝑆 = dom (𝐴 CNF 𝐵)
6 cantnfs.a . . . . . . 7 (𝜑𝐴 ∈ On)
75, 6, 1cantnfs 9602 . . . . . 6 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
84, 7mpbid 231 . . . . 5 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
98simpld 495 . . . 4 (𝜑𝐺:𝐵𝐴)
109ffnd 6669 . . 3 (𝜑𝐺 Fn 𝐵)
1110ad3antrrr 728 . 2 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝐺 Fn 𝐵)
12 oemapval.t . . . . . . 7 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
13 oemapval.f . . . . . . 7 (𝜑𝐹𝑆)
14 oemapvali.r . . . . . . 7 (𝜑𝐹𝑇𝐺)
15 oemapvali.x . . . . . . 7 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
16 cantnflem1.o . . . . . . 7 𝑂 = OrdIso( E , (𝐺 supp ∅))
175, 6, 1, 12, 13, 4, 14, 15, 16cantnflem1b 9622 . . . . . 6 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝑋 ⊆ (𝑂𝑢))
1817ad2antrr 724 . . . . 5 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑋 ⊆ (𝑂𝑢))
19 simprr 771 . . . . 5 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝑂𝑢) ∈ 𝑥)
205, 6, 1, 12, 13, 4, 14, 15oemapvali 9620 . . . . . . . . 9 (𝜑 → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋) ∧ ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤))))
2120simp1d 1142 . . . . . . . 8 (𝜑𝑋𝐵)
22 onelon 6342 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑋𝐵) → 𝑋 ∈ On)
231, 21, 22syl2anc 584 . . . . . . 7 (𝜑𝑋 ∈ On)
2423ad3antrrr 728 . . . . . 6 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑋 ∈ On)
25 onss 7719 . . . . . . . . 9 (𝐵 ∈ On → 𝐵 ⊆ On)
261, 25syl 17 . . . . . . . 8 (𝜑𝐵 ⊆ On)
2726sselda 3944 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑥 ∈ On)
2827ad4ant13 749 . . . . . 6 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑥 ∈ On)
29 ontr2 6364 . . . . . 6 ((𝑋 ∈ On ∧ 𝑥 ∈ On) → ((𝑋 ⊆ (𝑂𝑢) ∧ (𝑂𝑢) ∈ 𝑥) → 𝑋𝑥))
3024, 28, 29syl2anc 584 . . . . 5 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → ((𝑋 ⊆ (𝑂𝑢) ∧ (𝑂𝑢) ∈ 𝑥) → 𝑋𝑥))
3118, 19, 30mp2and 697 . . . 4 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑋𝑥)
32 eleq2w 2821 . . . . . 6 (𝑤 = 𝑥 → (𝑋𝑤𝑋𝑥))
33 fveq2 6842 . . . . . . 7 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
34 fveq2 6842 . . . . . . 7 (𝑤 = 𝑥 → (𝐺𝑤) = (𝐺𝑥))
3533, 34eqeq12d 2752 . . . . . 6 (𝑤 = 𝑥 → ((𝐹𝑤) = (𝐺𝑤) ↔ (𝐹𝑥) = (𝐺𝑥)))
3632, 35imbi12d 344 . . . . 5 (𝑤 = 𝑥 → ((𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)) ↔ (𝑋𝑥 → (𝐹𝑥) = (𝐺𝑥))))
3720simp3d 1144 . . . . . 6 (𝜑 → ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)))
3837ad3antrrr 728 . . . . 5 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)))
3936, 38, 3rspcdva 3582 . . . 4 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝑋𝑥 → (𝐹𝑥) = (𝐺𝑥)))
4031, 39mpd 15 . . 3 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝐹𝑥) = (𝐺𝑥))
41 simprl 769 . . 3 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝐹𝑥) ≠ ∅)
4240, 41eqnetrrd 3012 . 2 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝐺𝑥) ≠ ∅)
43 fvn0elsupp 8111 . 2 (((𝐵 ∈ On ∧ 𝑥𝐵) ∧ (𝐺 Fn 𝐵 ∧ (𝐺𝑥) ≠ ∅)) → 𝑥 ∈ (𝐺 supp ∅))
442, 3, 11, 42, 43syl22anc 837 1 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑥 ∈ (𝐺 supp ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  wss 3910  c0 4282   cuni 4865   class class class wbr 5105  {copab 5167   E cep 5536  ccnv 5632  dom cdm 5633  Oncon0 6317  suc csuc 6319   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357   supp csupp 8092   finSupp cfsupp 9305  OrdIsocoi 9445   CNF ccnf 9597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-seqom 8394  df-1o 8412  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-oi 9446  df-cnf 9598
This theorem is referenced by:  cantnflem1  9625
  Copyright terms: Public domain W3C validator