Proof of Theorem cantnflem1c
Step | Hyp | Ref
| Expression |
1 | | cantnfs.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ On) |
2 | 1 | ad3antrrr 727 |
. 2
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → 𝐵 ∈ On) |
3 | | simplr 766 |
. 2
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → 𝑥 ∈ 𝐵) |
4 | | oemapval.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ 𝑆) |
5 | | cantnfs.s |
. . . . . . 7
⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
6 | | cantnfs.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ On) |
7 | 5, 6, 1 | cantnfs 9424 |
. . . . . 6
⊢ (𝜑 → (𝐺 ∈ 𝑆 ↔ (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅))) |
8 | 4, 7 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅)) |
9 | 8 | simpld 495 |
. . . 4
⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
10 | 9 | ffnd 6601 |
. . 3
⊢ (𝜑 → 𝐺 Fn 𝐵) |
11 | 10 | ad3antrrr 727 |
. 2
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → 𝐺 Fn 𝐵) |
12 | | oemapval.t |
. . . . . . 7
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
13 | | oemapval.f |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ 𝑆) |
14 | | oemapvali.r |
. . . . . . 7
⊢ (𝜑 → 𝐹𝑇𝐺) |
15 | | oemapvali.x |
. . . . . . 7
⊢ 𝑋 = ∪
{𝑐 ∈ 𝐵 ∣ (𝐹‘𝑐) ∈ (𝐺‘𝑐)} |
16 | | cantnflem1.o |
. . . . . . 7
⊢ 𝑂 = OrdIso( E , (𝐺 supp ∅)) |
17 | 5, 6, 1, 12, 13, 4, 14, 15, 16 | cantnflem1b 9444 |
. . . . . 6
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝑋 ⊆ (𝑂‘𝑢)) |
18 | 17 | ad2antrr 723 |
. . . . 5
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → 𝑋 ⊆ (𝑂‘𝑢)) |
19 | | simprr 770 |
. . . . 5
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (𝑂‘𝑢) ∈ 𝑥) |
20 | 5, 6, 1, 12, 13, 4, 14, 15 | oemapvali 9442 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ (𝐹‘𝑋) ∈ (𝐺‘𝑋) ∧ ∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)))) |
21 | 20 | simp1d 1141 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
22 | | onelon 6291 |
. . . . . . . 8
⊢ ((𝐵 ∈ On ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ On) |
23 | 1, 21, 22 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ On) |
24 | 23 | ad3antrrr 727 |
. . . . . 6
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → 𝑋 ∈ On) |
25 | | onss 7634 |
. . . . . . . . 9
⊢ (𝐵 ∈ On → 𝐵 ⊆ On) |
26 | 1, 25 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ⊆ On) |
27 | 26 | sselda 3921 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) |
28 | 27 | ad4ant13 748 |
. . . . . 6
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → 𝑥 ∈ On) |
29 | | ontr2 6313 |
. . . . . 6
⊢ ((𝑋 ∈ On ∧ 𝑥 ∈ On) → ((𝑋 ⊆ (𝑂‘𝑢) ∧ (𝑂‘𝑢) ∈ 𝑥) → 𝑋 ∈ 𝑥)) |
30 | 24, 28, 29 | syl2anc 584 |
. . . . 5
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → ((𝑋 ⊆ (𝑂‘𝑢) ∧ (𝑂‘𝑢) ∈ 𝑥) → 𝑋 ∈ 𝑥)) |
31 | 18, 19, 30 | mp2and 696 |
. . . 4
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → 𝑋 ∈ 𝑥) |
32 | | eleq2w 2822 |
. . . . . 6
⊢ (𝑤 = 𝑥 → (𝑋 ∈ 𝑤 ↔ 𝑋 ∈ 𝑥)) |
33 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → (𝐹‘𝑤) = (𝐹‘𝑥)) |
34 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → (𝐺‘𝑤) = (𝐺‘𝑥)) |
35 | 33, 34 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑤 = 𝑥 → ((𝐹‘𝑤) = (𝐺‘𝑤) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
36 | 32, 35 | imbi12d 345 |
. . . . 5
⊢ (𝑤 = 𝑥 → ((𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)) ↔ (𝑋 ∈ 𝑥 → (𝐹‘𝑥) = (𝐺‘𝑥)))) |
37 | 20 | simp3d 1143 |
. . . . . 6
⊢ (𝜑 → ∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))) |
38 | 37 | ad3antrrr 727 |
. . . . 5
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → ∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))) |
39 | 36, 38, 3 | rspcdva 3562 |
. . . 4
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (𝑋 ∈ 𝑥 → (𝐹‘𝑥) = (𝐺‘𝑥))) |
40 | 31, 39 | mpd 15 |
. . 3
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
41 | | simprl 768 |
. . 3
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (𝐹‘𝑥) ≠ ∅) |
42 | 40, 41 | eqnetrrd 3012 |
. 2
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (𝐺‘𝑥) ≠ ∅) |
43 | | fvn0elsupp 7996 |
. 2
⊢ (((𝐵 ∈ On ∧ 𝑥 ∈ 𝐵) ∧ (𝐺 Fn 𝐵 ∧ (𝐺‘𝑥) ≠ ∅)) → 𝑥 ∈ (𝐺 supp ∅)) |
44 | 2, 3, 11, 42, 43 | syl22anc 836 |
1
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → 𝑥 ∈ (𝐺 supp ∅)) |