MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausmapdom Structured version   Visualization version   GIF version

Theorem hausmapdom 23529
Description: If 𝑋 is a first-countable Hausdorff space, then the cardinality of the closure of a set 𝐴 is bounded by to the power 𝐴. In particular, a first-countable Hausdorff space with a dense subset 𝐴 has cardinality at most 𝐴↑ℕ, and a separable first-countable Hausdorff space has cardinality at most 𝒫 ℕ. (Compare hauspwpwdom 24017 to see a weaker result if the assumption of first-countability is omitted.) (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
hauspwdom.1 𝑋 = 𝐽
Assertion
Ref Expression
hausmapdom ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴m ℕ))

Proof of Theorem hausmapdom
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hauspwdom.1 . . . . . . . 8 𝑋 = 𝐽
211stcelcls 23490 . . . . . . 7 ((𝐽 ∈ 1stω ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓:ℕ⟶𝐴𝑓(⇝𝑡𝐽)𝑥)))
323adant1 1130 . . . . . 6 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓:ℕ⟶𝐴𝑓(⇝𝑡𝐽)𝑥)))
4 uniexg 7775 . . . . . . . . . . . 12 (𝐽 ∈ Haus → 𝐽 ∈ V)
543ad2ant1 1133 . . . . . . . . . . 11 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → 𝐽 ∈ V)
61, 5eqeltrid 2848 . . . . . . . . . 10 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → 𝑋 ∈ V)
7 simp3 1138 . . . . . . . . . 10 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → 𝐴𝑋)
86, 7ssexd 5342 . . . . . . . . 9 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → 𝐴 ∈ V)
9 nnex 12299 . . . . . . . . 9 ℕ ∈ V
10 elmapg 8897 . . . . . . . . 9 ((𝐴 ∈ V ∧ ℕ ∈ V) → (𝑓 ∈ (𝐴m ℕ) ↔ 𝑓:ℕ⟶𝐴))
118, 9, 10sylancl 585 . . . . . . . 8 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → (𝑓 ∈ (𝐴m ℕ) ↔ 𝑓:ℕ⟶𝐴))
1211anbi1d 630 . . . . . . 7 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → ((𝑓 ∈ (𝐴m ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥) ↔ (𝑓:ℕ⟶𝐴𝑓(⇝𝑡𝐽)𝑥)))
1312exbidv 1920 . . . . . 6 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → (∃𝑓(𝑓 ∈ (𝐴m ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥) ↔ ∃𝑓(𝑓:ℕ⟶𝐴𝑓(⇝𝑡𝐽)𝑥)))
143, 13bitr4d 282 . . . . 5 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓 ∈ (𝐴m ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥)))
15 df-rex 3077 . . . . 5 (∃𝑓 ∈ (𝐴m ℕ)𝑓(⇝𝑡𝐽)𝑥 ↔ ∃𝑓(𝑓 ∈ (𝐴m ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥))
1614, 15bitr4di 289 . . . 4 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓 ∈ (𝐴m ℕ)𝑓(⇝𝑡𝐽)𝑥))
17 vex 3492 . . . . 5 𝑥 ∈ V
1817elima 6094 . . . 4 (𝑥 ∈ ((⇝𝑡𝐽) “ (𝐴m ℕ)) ↔ ∃𝑓 ∈ (𝐴m ℕ)𝑓(⇝𝑡𝐽)𝑥)
1916, 18bitr4di 289 . . 3 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥 ∈ ((⇝𝑡𝐽) “ (𝐴m ℕ))))
2019eqrdv 2738 . 2 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) = ((⇝𝑡𝐽) “ (𝐴m ℕ)))
21 ovex 7481 . . 3 (𝐴m ℕ) ∈ V
22 lmfun 23410 . . . 4 (𝐽 ∈ Haus → Fun (⇝𝑡𝐽))
23223ad2ant1 1133 . . 3 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → Fun (⇝𝑡𝐽))
24 imadomg 10603 . . 3 ((𝐴m ℕ) ∈ V → (Fun (⇝𝑡𝐽) → ((⇝𝑡𝐽) “ (𝐴m ℕ)) ≼ (𝐴m ℕ)))
2521, 23, 24mpsyl 68 . 2 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → ((⇝𝑡𝐽) “ (𝐴m ℕ)) ≼ (𝐴m ℕ))
2620, 25eqbrtrd 5188 1 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴m ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wrex 3076  Vcvv 3488  wss 3976   cuni 4931   class class class wbr 5166  cima 5703  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  cdom 9001  cn 12293  clsccl 23047  𝑡clm 23255  Hauscha 23337  1stωc1stc 23466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-acn 10011  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-top 22921  df-topon 22938  df-cld 23048  df-ntr 23049  df-cls 23050  df-lm 23258  df-haus 23344  df-1stc 23468
This theorem is referenced by:  hauspwdom  23530
  Copyright terms: Public domain W3C validator