| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hausmapdom | Structured version Visualization version GIF version | ||
| Description: If 𝑋 is a first-countable Hausdorff space, then the cardinality of the closure of a set 𝐴 is bounded by ℕ to the power 𝐴. In particular, a first-countable Hausdorff space with a dense subset 𝐴 has cardinality at most 𝐴↑ℕ, and a separable first-countable Hausdorff space has cardinality at most 𝒫 ℕ. (Compare hauspwpwdom 23851 to see a weaker result if the assumption of first-countability is omitted.) (Contributed by Mario Carneiro, 9-Apr-2015.) |
| Ref | Expression |
|---|---|
| hauspwdom.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| hausmapdom | ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴 ↑m ℕ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hauspwdom.1 | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | 1stcelcls 23324 | . . . . . . 7 ⊢ ((𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓:ℕ⟶𝐴 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
| 3 | 2 | 3adant1 1130 | . . . . . 6 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓:ℕ⟶𝐴 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
| 4 | uniexg 7696 | . . . . . . . . . . . 12 ⊢ (𝐽 ∈ Haus → ∪ 𝐽 ∈ V) | |
| 5 | 4 | 3ad2ant1 1133 | . . . . . . . . . . 11 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ∪ 𝐽 ∈ V) |
| 6 | 1, 5 | eqeltrid 2832 | . . . . . . . . . 10 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → 𝑋 ∈ V) |
| 7 | simp3 1138 | . . . . . . . . . 10 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
| 8 | 6, 7 | ssexd 5274 | . . . . . . . . 9 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
| 9 | nnex 12168 | . . . . . . . . 9 ⊢ ℕ ∈ V | |
| 10 | elmapg 8789 | . . . . . . . . 9 ⊢ ((𝐴 ∈ V ∧ ℕ ∈ V) → (𝑓 ∈ (𝐴 ↑m ℕ) ↔ 𝑓:ℕ⟶𝐴)) | |
| 11 | 8, 9, 10 | sylancl 586 | . . . . . . . 8 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (𝑓 ∈ (𝐴 ↑m ℕ) ↔ 𝑓:ℕ⟶𝐴)) |
| 12 | 11 | anbi1d 631 | . . . . . . 7 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ((𝑓 ∈ (𝐴 ↑m ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥) ↔ (𝑓:ℕ⟶𝐴 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
| 13 | 12 | exbidv 1921 | . . . . . 6 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (∃𝑓(𝑓 ∈ (𝐴 ↑m ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥) ↔ ∃𝑓(𝑓:ℕ⟶𝐴 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
| 14 | 3, 13 | bitr4d 282 | . . . . 5 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓 ∈ (𝐴 ↑m ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
| 15 | df-rex 3054 | . . . . 5 ⊢ (∃𝑓 ∈ (𝐴 ↑m ℕ)𝑓(⇝𝑡‘𝐽)𝑥 ↔ ∃𝑓(𝑓 ∈ (𝐴 ↑m ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥)) | |
| 16 | 14, 15 | bitr4di 289 | . . . 4 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓 ∈ (𝐴 ↑m ℕ)𝑓(⇝𝑡‘𝐽)𝑥)) |
| 17 | vex 3448 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 18 | 17 | elima 6025 | . . . 4 ⊢ (𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝐴 ↑m ℕ)) ↔ ∃𝑓 ∈ (𝐴 ↑m ℕ)𝑓(⇝𝑡‘𝐽)𝑥) |
| 19 | 16, 18 | bitr4di 289 | . . 3 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝐴 ↑m ℕ)))) |
| 20 | 19 | eqrdv 2727 | . 2 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) = ((⇝𝑡‘𝐽) “ (𝐴 ↑m ℕ))) |
| 21 | ovex 7402 | . . 3 ⊢ (𝐴 ↑m ℕ) ∈ V | |
| 22 | lmfun 23244 | . . . 4 ⊢ (𝐽 ∈ Haus → Fun (⇝𝑡‘𝐽)) | |
| 23 | 22 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → Fun (⇝𝑡‘𝐽)) |
| 24 | imadomg 10463 | . . 3 ⊢ ((𝐴 ↑m ℕ) ∈ V → (Fun (⇝𝑡‘𝐽) → ((⇝𝑡‘𝐽) “ (𝐴 ↑m ℕ)) ≼ (𝐴 ↑m ℕ))) | |
| 25 | 21, 23, 24 | mpsyl 68 | . 2 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ((⇝𝑡‘𝐽) “ (𝐴 ↑m ℕ)) ≼ (𝐴 ↑m ℕ)) |
| 26 | 20, 25 | eqbrtrd 5124 | 1 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴 ↑m ℕ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 Vcvv 3444 ⊆ wss 3911 ∪ cuni 4867 class class class wbr 5102 “ cima 5634 Fun wfun 6493 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 ≼ cdom 8893 ℕcn 12162 clsccl 22881 ⇝𝑡clm 23089 Hauscha 23171 1stωc1stc 23300 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cc 10364 ax-ac2 10392 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-acn 9871 df-ac 10045 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-top 22757 df-topon 22774 df-cld 22882 df-ntr 22883 df-cls 22884 df-lm 23092 df-haus 23178 df-1stc 23302 |
| This theorem is referenced by: hauspwdom 23364 |
| Copyright terms: Public domain | W3C validator |