| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hausmapdom | Structured version Visualization version GIF version | ||
| Description: If 𝑋 is a first-countable Hausdorff space, then the cardinality of the closure of a set 𝐴 is bounded by ℕ to the power 𝐴. In particular, a first-countable Hausdorff space with a dense subset 𝐴 has cardinality at most 𝐴↑ℕ, and a separable first-countable Hausdorff space has cardinality at most 𝒫 ℕ. (Compare hauspwpwdom 23875 to see a weaker result if the assumption of first-countability is omitted.) (Contributed by Mario Carneiro, 9-Apr-2015.) |
| Ref | Expression |
|---|---|
| hauspwdom.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| hausmapdom | ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴 ↑m ℕ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hauspwdom.1 | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | 1stcelcls 23348 | . . . . . . 7 ⊢ ((𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓:ℕ⟶𝐴 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
| 3 | 2 | 3adant1 1130 | . . . . . 6 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓:ℕ⟶𝐴 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
| 4 | uniexg 7716 | . . . . . . . . . . . 12 ⊢ (𝐽 ∈ Haus → ∪ 𝐽 ∈ V) | |
| 5 | 4 | 3ad2ant1 1133 | . . . . . . . . . . 11 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ∪ 𝐽 ∈ V) |
| 6 | 1, 5 | eqeltrid 2832 | . . . . . . . . . 10 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → 𝑋 ∈ V) |
| 7 | simp3 1138 | . . . . . . . . . 10 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
| 8 | 6, 7 | ssexd 5279 | . . . . . . . . 9 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
| 9 | nnex 12192 | . . . . . . . . 9 ⊢ ℕ ∈ V | |
| 10 | elmapg 8812 | . . . . . . . . 9 ⊢ ((𝐴 ∈ V ∧ ℕ ∈ V) → (𝑓 ∈ (𝐴 ↑m ℕ) ↔ 𝑓:ℕ⟶𝐴)) | |
| 11 | 8, 9, 10 | sylancl 586 | . . . . . . . 8 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (𝑓 ∈ (𝐴 ↑m ℕ) ↔ 𝑓:ℕ⟶𝐴)) |
| 12 | 11 | anbi1d 631 | . . . . . . 7 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ((𝑓 ∈ (𝐴 ↑m ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥) ↔ (𝑓:ℕ⟶𝐴 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
| 13 | 12 | exbidv 1921 | . . . . . 6 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (∃𝑓(𝑓 ∈ (𝐴 ↑m ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥) ↔ ∃𝑓(𝑓:ℕ⟶𝐴 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
| 14 | 3, 13 | bitr4d 282 | . . . . 5 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓 ∈ (𝐴 ↑m ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
| 15 | df-rex 3054 | . . . . 5 ⊢ (∃𝑓 ∈ (𝐴 ↑m ℕ)𝑓(⇝𝑡‘𝐽)𝑥 ↔ ∃𝑓(𝑓 ∈ (𝐴 ↑m ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥)) | |
| 16 | 14, 15 | bitr4di 289 | . . . 4 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓 ∈ (𝐴 ↑m ℕ)𝑓(⇝𝑡‘𝐽)𝑥)) |
| 17 | vex 3451 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 18 | 17 | elima 6036 | . . . 4 ⊢ (𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝐴 ↑m ℕ)) ↔ ∃𝑓 ∈ (𝐴 ↑m ℕ)𝑓(⇝𝑡‘𝐽)𝑥) |
| 19 | 16, 18 | bitr4di 289 | . . 3 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝐴 ↑m ℕ)))) |
| 20 | 19 | eqrdv 2727 | . 2 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) = ((⇝𝑡‘𝐽) “ (𝐴 ↑m ℕ))) |
| 21 | ovex 7420 | . . 3 ⊢ (𝐴 ↑m ℕ) ∈ V | |
| 22 | lmfun 23268 | . . . 4 ⊢ (𝐽 ∈ Haus → Fun (⇝𝑡‘𝐽)) | |
| 23 | 22 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → Fun (⇝𝑡‘𝐽)) |
| 24 | imadomg 10487 | . . 3 ⊢ ((𝐴 ↑m ℕ) ∈ V → (Fun (⇝𝑡‘𝐽) → ((⇝𝑡‘𝐽) “ (𝐴 ↑m ℕ)) ≼ (𝐴 ↑m ℕ))) | |
| 25 | 21, 23, 24 | mpsyl 68 | . 2 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ((⇝𝑡‘𝐽) “ (𝐴 ↑m ℕ)) ≼ (𝐴 ↑m ℕ)) |
| 26 | 20, 25 | eqbrtrd 5129 | 1 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴 ↑m ℕ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 Vcvv 3447 ⊆ wss 3914 ∪ cuni 4871 class class class wbr 5107 “ cima 5641 Fun wfun 6505 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 ≼ cdom 8916 ℕcn 12186 clsccl 22905 ⇝𝑡clm 23113 Hauscha 23195 1stωc1stc 23324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cc 10388 ax-ac2 10416 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-acn 9895 df-ac 10069 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-top 22781 df-topon 22798 df-cld 22906 df-ntr 22907 df-cls 22908 df-lm 23116 df-haus 23202 df-1stc 23326 |
| This theorem is referenced by: hauspwdom 23388 |
| Copyright terms: Public domain | W3C validator |