![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hausmapdom | Structured version Visualization version GIF version |
Description: If 𝑋 is a first-countable Hausdorff space, then the cardinality of the closure of a set 𝐴 is bounded by ℕ to the power 𝐴. In particular, a first-countable Hausdorff space with a dense subset 𝐴 has cardinality at most 𝐴↑ℕ, and a separable first-countable Hausdorff space has cardinality at most 𝒫 ℕ. (Compare hauspwpwdom 22315 to see a weaker result if the assumption of first-countability is omitted.) (Contributed by Mario Carneiro, 9-Apr-2015.) |
Ref | Expression |
---|---|
hauspwdom.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
hausmapdom | ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴 ↑𝑚 ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hauspwdom.1 | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | 1stcelcls 21788 | . . . . . . 7 ⊢ ((𝐽 ∈ 1st𝜔 ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓:ℕ⟶𝐴 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
3 | 2 | 3adant1 1111 | . . . . . 6 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓:ℕ⟶𝐴 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
4 | uniexg 7283 | . . . . . . . . . . . 12 ⊢ (𝐽 ∈ Haus → ∪ 𝐽 ∈ V) | |
5 | 4 | 3ad2ant1 1114 | . . . . . . . . . . 11 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴 ⊆ 𝑋) → ∪ 𝐽 ∈ V) |
6 | 1, 5 | syl5eqel 2863 | . . . . . . . . . 10 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴 ⊆ 𝑋) → 𝑋 ∈ V) |
7 | simp3 1119 | . . . . . . . . . 10 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
8 | 6, 7 | ssexd 5080 | . . . . . . . . 9 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
9 | nnex 11444 | . . . . . . . . 9 ⊢ ℕ ∈ V | |
10 | elmapg 8217 | . . . . . . . . 9 ⊢ ((𝐴 ∈ V ∧ ℕ ∈ V) → (𝑓 ∈ (𝐴 ↑𝑚 ℕ) ↔ 𝑓:ℕ⟶𝐴)) | |
11 | 8, 9, 10 | sylancl 578 | . . . . . . . 8 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴 ⊆ 𝑋) → (𝑓 ∈ (𝐴 ↑𝑚 ℕ) ↔ 𝑓:ℕ⟶𝐴)) |
12 | 11 | anbi1d 621 | . . . . . . 7 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴 ⊆ 𝑋) → ((𝑓 ∈ (𝐴 ↑𝑚 ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥) ↔ (𝑓:ℕ⟶𝐴 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
13 | 12 | exbidv 1881 | . . . . . 6 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴 ⊆ 𝑋) → (∃𝑓(𝑓 ∈ (𝐴 ↑𝑚 ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥) ↔ ∃𝑓(𝑓:ℕ⟶𝐴 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
14 | 3, 13 | bitr4d 274 | . . . . 5 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓 ∈ (𝐴 ↑𝑚 ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
15 | df-rex 3087 | . . . . 5 ⊢ (∃𝑓 ∈ (𝐴 ↑𝑚 ℕ)𝑓(⇝𝑡‘𝐽)𝑥 ↔ ∃𝑓(𝑓 ∈ (𝐴 ↑𝑚 ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥)) | |
16 | 14, 15 | syl6bbr 281 | . . . 4 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓 ∈ (𝐴 ↑𝑚 ℕ)𝑓(⇝𝑡‘𝐽)𝑥)) |
17 | vex 3411 | . . . . 5 ⊢ 𝑥 ∈ V | |
18 | 17 | elima 5772 | . . . 4 ⊢ (𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝐴 ↑𝑚 ℕ)) ↔ ∃𝑓 ∈ (𝐴 ↑𝑚 ℕ)𝑓(⇝𝑡‘𝐽)𝑥) |
19 | 16, 18 | syl6bbr 281 | . . 3 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝐴 ↑𝑚 ℕ)))) |
20 | 19 | eqrdv 2769 | . 2 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) = ((⇝𝑡‘𝐽) “ (𝐴 ↑𝑚 ℕ))) |
21 | ovex 7006 | . . 3 ⊢ (𝐴 ↑𝑚 ℕ) ∈ V | |
22 | lmfun 21708 | . . . 4 ⊢ (𝐽 ∈ Haus → Fun (⇝𝑡‘𝐽)) | |
23 | 22 | 3ad2ant1 1114 | . . 3 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴 ⊆ 𝑋) → Fun (⇝𝑡‘𝐽)) |
24 | imadomg 9752 | . . 3 ⊢ ((𝐴 ↑𝑚 ℕ) ∈ V → (Fun (⇝𝑡‘𝐽) → ((⇝𝑡‘𝐽) “ (𝐴 ↑𝑚 ℕ)) ≼ (𝐴 ↑𝑚 ℕ))) | |
25 | 21, 23, 24 | mpsyl 68 | . 2 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴 ⊆ 𝑋) → ((⇝𝑡‘𝐽) “ (𝐴 ↑𝑚 ℕ)) ≼ (𝐴 ↑𝑚 ℕ)) |
26 | 20, 25 | eqbrtrd 4947 | 1 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴 ↑𝑚 ℕ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1069 = wceq 1508 ∃wex 1743 ∈ wcel 2051 ∃wrex 3082 Vcvv 3408 ⊆ wss 3822 ∪ cuni 4708 class class class wbr 4925 “ cima 5406 Fun wfun 6179 ⟶wf 6181 ‘cfv 6185 (class class class)co 6974 ↑𝑚 cmap 8204 ≼ cdom 8302 ℕcn 11437 clsccl 21345 ⇝𝑡clm 21553 Hauscha 21635 1st𝜔c1stc 21764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-inf2 8896 ax-cc 9653 ax-ac2 9681 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rmo 3089 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-iin 4791 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-se 5363 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-isom 6194 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7499 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-oadd 7907 df-er 8087 df-map 8206 df-pm 8207 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-card 9160 df-acn 9163 df-ac 9334 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-nn 11438 df-n0 11706 df-z 11792 df-uz 12057 df-fz 12707 df-top 21221 df-topon 21238 df-cld 21346 df-ntr 21347 df-cls 21348 df-lm 21556 df-haus 21642 df-1stc 21766 |
This theorem is referenced by: hauspwdom 21828 |
Copyright terms: Public domain | W3C validator |