MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausmapdom Structured version   Visualization version   GIF version

Theorem hausmapdom 21827
Description: If 𝑋 is a first-countable Hausdorff space, then the cardinality of the closure of a set 𝐴 is bounded by to the power 𝐴. In particular, a first-countable Hausdorff space with a dense subset 𝐴 has cardinality at most 𝐴↑ℕ, and a separable first-countable Hausdorff space has cardinality at most 𝒫 ℕ. (Compare hauspwpwdom 22315 to see a weaker result if the assumption of first-countability is omitted.) (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
hauspwdom.1 𝑋 = 𝐽
Assertion
Ref Expression
hausmapdom ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴𝑚 ℕ))

Proof of Theorem hausmapdom
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hauspwdom.1 . . . . . . . 8 𝑋 = 𝐽
211stcelcls 21788 . . . . . . 7 ((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓:ℕ⟶𝐴𝑓(⇝𝑡𝐽)𝑥)))
323adant1 1111 . . . . . 6 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓:ℕ⟶𝐴𝑓(⇝𝑡𝐽)𝑥)))
4 uniexg 7283 . . . . . . . . . . . 12 (𝐽 ∈ Haus → 𝐽 ∈ V)
543ad2ant1 1114 . . . . . . . . . . 11 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → 𝐽 ∈ V)
61, 5syl5eqel 2863 . . . . . . . . . 10 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → 𝑋 ∈ V)
7 simp3 1119 . . . . . . . . . 10 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → 𝐴𝑋)
86, 7ssexd 5080 . . . . . . . . 9 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → 𝐴 ∈ V)
9 nnex 11444 . . . . . . . . 9 ℕ ∈ V
10 elmapg 8217 . . . . . . . . 9 ((𝐴 ∈ V ∧ ℕ ∈ V) → (𝑓 ∈ (𝐴𝑚 ℕ) ↔ 𝑓:ℕ⟶𝐴))
118, 9, 10sylancl 578 . . . . . . . 8 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → (𝑓 ∈ (𝐴𝑚 ℕ) ↔ 𝑓:ℕ⟶𝐴))
1211anbi1d 621 . . . . . . 7 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → ((𝑓 ∈ (𝐴𝑚 ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥) ↔ (𝑓:ℕ⟶𝐴𝑓(⇝𝑡𝐽)𝑥)))
1312exbidv 1881 . . . . . 6 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → (∃𝑓(𝑓 ∈ (𝐴𝑚 ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥) ↔ ∃𝑓(𝑓:ℕ⟶𝐴𝑓(⇝𝑡𝐽)𝑥)))
143, 13bitr4d 274 . . . . 5 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓 ∈ (𝐴𝑚 ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥)))
15 df-rex 3087 . . . . 5 (∃𝑓 ∈ (𝐴𝑚 ℕ)𝑓(⇝𝑡𝐽)𝑥 ↔ ∃𝑓(𝑓 ∈ (𝐴𝑚 ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥))
1614, 15syl6bbr 281 . . . 4 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓 ∈ (𝐴𝑚 ℕ)𝑓(⇝𝑡𝐽)𝑥))
17 vex 3411 . . . . 5 𝑥 ∈ V
1817elima 5772 . . . 4 (𝑥 ∈ ((⇝𝑡𝐽) “ (𝐴𝑚 ℕ)) ↔ ∃𝑓 ∈ (𝐴𝑚 ℕ)𝑓(⇝𝑡𝐽)𝑥)
1916, 18syl6bbr 281 . . 3 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥 ∈ ((⇝𝑡𝐽) “ (𝐴𝑚 ℕ))))
2019eqrdv 2769 . 2 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) = ((⇝𝑡𝐽) “ (𝐴𝑚 ℕ)))
21 ovex 7006 . . 3 (𝐴𝑚 ℕ) ∈ V
22 lmfun 21708 . . . 4 (𝐽 ∈ Haus → Fun (⇝𝑡𝐽))
23223ad2ant1 1114 . . 3 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → Fun (⇝𝑡𝐽))
24 imadomg 9752 . . 3 ((𝐴𝑚 ℕ) ∈ V → (Fun (⇝𝑡𝐽) → ((⇝𝑡𝐽) “ (𝐴𝑚 ℕ)) ≼ (𝐴𝑚 ℕ)))
2521, 23, 24mpsyl 68 . 2 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → ((⇝𝑡𝐽) “ (𝐴𝑚 ℕ)) ≼ (𝐴𝑚 ℕ))
2620, 25eqbrtrd 4947 1 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴𝑚 ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1069   = wceq 1508  wex 1743  wcel 2051  wrex 3082  Vcvv 3408  wss 3822   cuni 4708   class class class wbr 4925  cima 5406  Fun wfun 6179  wf 6181  cfv 6185  (class class class)co 6974  𝑚 cmap 8204  cdom 8302  cn 11437  clsccl 21345  𝑡clm 21553  Hauscha 21635  1st𝜔c1stc 21764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-inf2 8896  ax-cc 9653  ax-ac2 9681  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-iin 4791  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-se 5363  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-isom 6194  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-oadd 7907  df-er 8087  df-map 8206  df-pm 8207  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-card 9160  df-acn 9163  df-ac 9334  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-nn 11438  df-n0 11706  df-z 11792  df-uz 12057  df-fz 12707  df-top 21221  df-topon 21238  df-cld 21346  df-ntr 21347  df-cls 21348  df-lm 21556  df-haus 21642  df-1stc 21766
This theorem is referenced by:  hauspwdom  21828
  Copyright terms: Public domain W3C validator