Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausmapdom Structured version   Visualization version   GIF version

Theorem hausmapdom 22109
 Description: If 𝑋 is a first-countable Hausdorff space, then the cardinality of the closure of a set 𝐴 is bounded by ℕ to the power 𝐴. In particular, a first-countable Hausdorff space with a dense subset 𝐴 has cardinality at most 𝐴↑ℕ, and a separable first-countable Hausdorff space has cardinality at most 𝒫 ℕ. (Compare hauspwpwdom 22597 to see a weaker result if the assumption of first-countability is omitted.) (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
hauspwdom.1 𝑋 = 𝐽
Assertion
Ref Expression
hausmapdom ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴m ℕ))

Proof of Theorem hausmapdom
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hauspwdom.1 . . . . . . . 8 𝑋 = 𝐽
211stcelcls 22070 . . . . . . 7 ((𝐽 ∈ 1stω ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓:ℕ⟶𝐴𝑓(⇝𝑡𝐽)𝑥)))
323adant1 1127 . . . . . 6 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓:ℕ⟶𝐴𝑓(⇝𝑡𝐽)𝑥)))
4 uniexg 7450 . . . . . . . . . . . 12 (𝐽 ∈ Haus → 𝐽 ∈ V)
543ad2ant1 1130 . . . . . . . . . . 11 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → 𝐽 ∈ V)
61, 5eqeltrid 2897 . . . . . . . . . 10 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → 𝑋 ∈ V)
7 simp3 1135 . . . . . . . . . 10 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → 𝐴𝑋)
86, 7ssexd 5195 . . . . . . . . 9 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → 𝐴 ∈ V)
9 nnex 11635 . . . . . . . . 9 ℕ ∈ V
10 elmapg 8406 . . . . . . . . 9 ((𝐴 ∈ V ∧ ℕ ∈ V) → (𝑓 ∈ (𝐴m ℕ) ↔ 𝑓:ℕ⟶𝐴))
118, 9, 10sylancl 589 . . . . . . . 8 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → (𝑓 ∈ (𝐴m ℕ) ↔ 𝑓:ℕ⟶𝐴))
1211anbi1d 632 . . . . . . 7 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → ((𝑓 ∈ (𝐴m ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥) ↔ (𝑓:ℕ⟶𝐴𝑓(⇝𝑡𝐽)𝑥)))
1312exbidv 1922 . . . . . 6 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → (∃𝑓(𝑓 ∈ (𝐴m ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥) ↔ ∃𝑓(𝑓:ℕ⟶𝐴𝑓(⇝𝑡𝐽)𝑥)))
143, 13bitr4d 285 . . . . 5 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓 ∈ (𝐴m ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥)))
15 df-rex 3115 . . . . 5 (∃𝑓 ∈ (𝐴m ℕ)𝑓(⇝𝑡𝐽)𝑥 ↔ ∃𝑓(𝑓 ∈ (𝐴m ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥))
1614, 15syl6bbr 292 . . . 4 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓 ∈ (𝐴m ℕ)𝑓(⇝𝑡𝐽)𝑥))
17 vex 3447 . . . . 5 𝑥 ∈ V
1817elima 5905 . . . 4 (𝑥 ∈ ((⇝𝑡𝐽) “ (𝐴m ℕ)) ↔ ∃𝑓 ∈ (𝐴m ℕ)𝑓(⇝𝑡𝐽)𝑥)
1916, 18syl6bbr 292 . . 3 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥 ∈ ((⇝𝑡𝐽) “ (𝐴m ℕ))))
2019eqrdv 2799 . 2 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) = ((⇝𝑡𝐽) “ (𝐴m ℕ)))
21 ovex 7172 . . 3 (𝐴m ℕ) ∈ V
22 lmfun 21990 . . . 4 (𝐽 ∈ Haus → Fun (⇝𝑡𝐽))
23223ad2ant1 1130 . . 3 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → Fun (⇝𝑡𝐽))
24 imadomg 9949 . . 3 ((𝐴m ℕ) ∈ V → (Fun (⇝𝑡𝐽) → ((⇝𝑡𝐽) “ (𝐴m ℕ)) ≼ (𝐴m ℕ)))
2521, 23, 24mpsyl 68 . 2 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → ((⇝𝑡𝐽) “ (𝐴m ℕ)) ≼ (𝐴m ℕ))
2620, 25eqbrtrd 5055 1 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴m ℕ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538  ∃wex 1781   ∈ wcel 2112  ∃wrex 3110  Vcvv 3444   ⊆ wss 3884  ∪ cuni 4803   class class class wbr 5033   “ cima 5526  Fun wfun 6322  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139   ↑m cmap 8393   ≼ cdom 8494  ℕcn 11629  clsccl 21627  ⇝𝑡clm 21835  Hauscha 21917  1stωc1stc 22046 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cc 9850  ax-ac2 9878  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-card 9356  df-acn 9359  df-ac 9531  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-top 21503  df-topon 21520  df-cld 21628  df-ntr 21629  df-cls 21630  df-lm 21838  df-haus 21924  df-1stc 22048 This theorem is referenced by:  hauspwdom  22110
 Copyright terms: Public domain W3C validator