![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hausmapdom | Structured version Visualization version GIF version |
Description: If 𝑋 is a first-countable Hausdorff space, then the cardinality of the closure of a set 𝐴 is bounded by ℕ to the power 𝐴. In particular, a first-countable Hausdorff space with a dense subset 𝐴 has cardinality at most 𝐴↑ℕ, and a separable first-countable Hausdorff space has cardinality at most 𝒫 ℕ. (Compare hauspwpwdom 24017 to see a weaker result if the assumption of first-countability is omitted.) (Contributed by Mario Carneiro, 9-Apr-2015.) |
Ref | Expression |
---|---|
hauspwdom.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
hausmapdom | ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴 ↑m ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hauspwdom.1 | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | 1stcelcls 23490 | . . . . . . 7 ⊢ ((𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓:ℕ⟶𝐴 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
3 | 2 | 3adant1 1130 | . . . . . 6 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓:ℕ⟶𝐴 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
4 | uniexg 7775 | . . . . . . . . . . . 12 ⊢ (𝐽 ∈ Haus → ∪ 𝐽 ∈ V) | |
5 | 4 | 3ad2ant1 1133 | . . . . . . . . . . 11 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ∪ 𝐽 ∈ V) |
6 | 1, 5 | eqeltrid 2848 | . . . . . . . . . 10 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → 𝑋 ∈ V) |
7 | simp3 1138 | . . . . . . . . . 10 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
8 | 6, 7 | ssexd 5342 | . . . . . . . . 9 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
9 | nnex 12299 | . . . . . . . . 9 ⊢ ℕ ∈ V | |
10 | elmapg 8897 | . . . . . . . . 9 ⊢ ((𝐴 ∈ V ∧ ℕ ∈ V) → (𝑓 ∈ (𝐴 ↑m ℕ) ↔ 𝑓:ℕ⟶𝐴)) | |
11 | 8, 9, 10 | sylancl 585 | . . . . . . . 8 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (𝑓 ∈ (𝐴 ↑m ℕ) ↔ 𝑓:ℕ⟶𝐴)) |
12 | 11 | anbi1d 630 | . . . . . . 7 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ((𝑓 ∈ (𝐴 ↑m ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥) ↔ (𝑓:ℕ⟶𝐴 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
13 | 12 | exbidv 1920 | . . . . . 6 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (∃𝑓(𝑓 ∈ (𝐴 ↑m ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥) ↔ ∃𝑓(𝑓:ℕ⟶𝐴 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
14 | 3, 13 | bitr4d 282 | . . . . 5 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓 ∈ (𝐴 ↑m ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
15 | df-rex 3077 | . . . . 5 ⊢ (∃𝑓 ∈ (𝐴 ↑m ℕ)𝑓(⇝𝑡‘𝐽)𝑥 ↔ ∃𝑓(𝑓 ∈ (𝐴 ↑m ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥)) | |
16 | 14, 15 | bitr4di 289 | . . . 4 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓 ∈ (𝐴 ↑m ℕ)𝑓(⇝𝑡‘𝐽)𝑥)) |
17 | vex 3492 | . . . . 5 ⊢ 𝑥 ∈ V | |
18 | 17 | elima 6094 | . . . 4 ⊢ (𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝐴 ↑m ℕ)) ↔ ∃𝑓 ∈ (𝐴 ↑m ℕ)𝑓(⇝𝑡‘𝐽)𝑥) |
19 | 16, 18 | bitr4di 289 | . . 3 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝐴 ↑m ℕ)))) |
20 | 19 | eqrdv 2738 | . 2 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) = ((⇝𝑡‘𝐽) “ (𝐴 ↑m ℕ))) |
21 | ovex 7481 | . . 3 ⊢ (𝐴 ↑m ℕ) ∈ V | |
22 | lmfun 23410 | . . . 4 ⊢ (𝐽 ∈ Haus → Fun (⇝𝑡‘𝐽)) | |
23 | 22 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → Fun (⇝𝑡‘𝐽)) |
24 | imadomg 10603 | . . 3 ⊢ ((𝐴 ↑m ℕ) ∈ V → (Fun (⇝𝑡‘𝐽) → ((⇝𝑡‘𝐽) “ (𝐴 ↑m ℕ)) ≼ (𝐴 ↑m ℕ))) | |
25 | 21, 23, 24 | mpsyl 68 | . 2 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ((⇝𝑡‘𝐽) “ (𝐴 ↑m ℕ)) ≼ (𝐴 ↑m ℕ)) |
26 | 20, 25 | eqbrtrd 5188 | 1 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴 ↑m ℕ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 ⊆ wss 3976 ∪ cuni 4931 class class class wbr 5166 “ cima 5703 Fun wfun 6567 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 ≼ cdom 9001 ℕcn 12293 clsccl 23047 ⇝𝑡clm 23255 Hauscha 23337 1stωc1stc 23466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cc 10504 ax-ac2 10532 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-acn 10011 df-ac 10185 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-top 22921 df-topon 22938 df-cld 23048 df-ntr 23049 df-cls 23050 df-lm 23258 df-haus 23344 df-1stc 23468 |
This theorem is referenced by: hauspwdom 23530 |
Copyright terms: Public domain | W3C validator |