MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausmapdom Structured version   Visualization version   GIF version

Theorem hausmapdom 23508
Description: If 𝑋 is a first-countable Hausdorff space, then the cardinality of the closure of a set 𝐴 is bounded by to the power 𝐴. In particular, a first-countable Hausdorff space with a dense subset 𝐴 has cardinality at most 𝐴↑ℕ, and a separable first-countable Hausdorff space has cardinality at most 𝒫 ℕ. (Compare hauspwpwdom 23996 to see a weaker result if the assumption of first-countability is omitted.) (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
hauspwdom.1 𝑋 = 𝐽
Assertion
Ref Expression
hausmapdom ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴m ℕ))

Proof of Theorem hausmapdom
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hauspwdom.1 . . . . . . . 8 𝑋 = 𝐽
211stcelcls 23469 . . . . . . 7 ((𝐽 ∈ 1stω ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓:ℕ⟶𝐴𝑓(⇝𝑡𝐽)𝑥)))
323adant1 1131 . . . . . 6 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓:ℕ⟶𝐴𝑓(⇝𝑡𝐽)𝑥)))
4 uniexg 7760 . . . . . . . . . . . 12 (𝐽 ∈ Haus → 𝐽 ∈ V)
543ad2ant1 1134 . . . . . . . . . . 11 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → 𝐽 ∈ V)
61, 5eqeltrid 2845 . . . . . . . . . 10 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → 𝑋 ∈ V)
7 simp3 1139 . . . . . . . . . 10 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → 𝐴𝑋)
86, 7ssexd 5324 . . . . . . . . 9 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → 𝐴 ∈ V)
9 nnex 12272 . . . . . . . . 9 ℕ ∈ V
10 elmapg 8879 . . . . . . . . 9 ((𝐴 ∈ V ∧ ℕ ∈ V) → (𝑓 ∈ (𝐴m ℕ) ↔ 𝑓:ℕ⟶𝐴))
118, 9, 10sylancl 586 . . . . . . . 8 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → (𝑓 ∈ (𝐴m ℕ) ↔ 𝑓:ℕ⟶𝐴))
1211anbi1d 631 . . . . . . 7 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → ((𝑓 ∈ (𝐴m ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥) ↔ (𝑓:ℕ⟶𝐴𝑓(⇝𝑡𝐽)𝑥)))
1312exbidv 1921 . . . . . 6 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → (∃𝑓(𝑓 ∈ (𝐴m ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥) ↔ ∃𝑓(𝑓:ℕ⟶𝐴𝑓(⇝𝑡𝐽)𝑥)))
143, 13bitr4d 282 . . . . 5 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓 ∈ (𝐴m ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥)))
15 df-rex 3071 . . . . 5 (∃𝑓 ∈ (𝐴m ℕ)𝑓(⇝𝑡𝐽)𝑥 ↔ ∃𝑓(𝑓 ∈ (𝐴m ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥))
1614, 15bitr4di 289 . . . 4 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓 ∈ (𝐴m ℕ)𝑓(⇝𝑡𝐽)𝑥))
17 vex 3484 . . . . 5 𝑥 ∈ V
1817elima 6083 . . . 4 (𝑥 ∈ ((⇝𝑡𝐽) “ (𝐴m ℕ)) ↔ ∃𝑓 ∈ (𝐴m ℕ)𝑓(⇝𝑡𝐽)𝑥)
1916, 18bitr4di 289 . . 3 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥 ∈ ((⇝𝑡𝐽) “ (𝐴m ℕ))))
2019eqrdv 2735 . 2 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) = ((⇝𝑡𝐽) “ (𝐴m ℕ)))
21 ovex 7464 . . 3 (𝐴m ℕ) ∈ V
22 lmfun 23389 . . . 4 (𝐽 ∈ Haus → Fun (⇝𝑡𝐽))
23223ad2ant1 1134 . . 3 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → Fun (⇝𝑡𝐽))
24 imadomg 10574 . . 3 ((𝐴m ℕ) ∈ V → (Fun (⇝𝑡𝐽) → ((⇝𝑡𝐽) “ (𝐴m ℕ)) ≼ (𝐴m ℕ)))
2521, 23, 24mpsyl 68 . 2 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → ((⇝𝑡𝐽) “ (𝐴m ℕ)) ≼ (𝐴m ℕ))
2620, 25eqbrtrd 5165 1 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴m ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wrex 3070  Vcvv 3480  wss 3951   cuni 4907   class class class wbr 5143  cima 5688  Fun wfun 6555  wf 6557  cfv 6561  (class class class)co 7431  m cmap 8866  cdom 8983  cn 12266  clsccl 23026  𝑡clm 23234  Hauscha 23316  1stωc1stc 23445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-ac2 10503  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-acn 9982  df-ac 10156  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-top 22900  df-topon 22917  df-cld 23027  df-ntr 23028  df-cls 23029  df-lm 23237  df-haus 23323  df-1stc 23447
This theorem is referenced by:  hauspwdom  23509
  Copyright terms: Public domain W3C validator