| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hausmapdom | Structured version Visualization version GIF version | ||
| Description: If 𝑋 is a first-countable Hausdorff space, then the cardinality of the closure of a set 𝐴 is bounded by ℕ to the power 𝐴. In particular, a first-countable Hausdorff space with a dense subset 𝐴 has cardinality at most 𝐴↑ℕ, and a separable first-countable Hausdorff space has cardinality at most 𝒫 ℕ. (Compare hauspwpwdom 23882 to see a weaker result if the assumption of first-countability is omitted.) (Contributed by Mario Carneiro, 9-Apr-2015.) |
| Ref | Expression |
|---|---|
| hauspwdom.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| hausmapdom | ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴 ↑m ℕ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hauspwdom.1 | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | 1stcelcls 23355 | . . . . . . 7 ⊢ ((𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓:ℕ⟶𝐴 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
| 3 | 2 | 3adant1 1130 | . . . . . 6 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓:ℕ⟶𝐴 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
| 4 | uniexg 7719 | . . . . . . . . . . . 12 ⊢ (𝐽 ∈ Haus → ∪ 𝐽 ∈ V) | |
| 5 | 4 | 3ad2ant1 1133 | . . . . . . . . . . 11 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ∪ 𝐽 ∈ V) |
| 6 | 1, 5 | eqeltrid 2833 | . . . . . . . . . 10 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → 𝑋 ∈ V) |
| 7 | simp3 1138 | . . . . . . . . . 10 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
| 8 | 6, 7 | ssexd 5282 | . . . . . . . . 9 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
| 9 | nnex 12199 | . . . . . . . . 9 ⊢ ℕ ∈ V | |
| 10 | elmapg 8815 | . . . . . . . . 9 ⊢ ((𝐴 ∈ V ∧ ℕ ∈ V) → (𝑓 ∈ (𝐴 ↑m ℕ) ↔ 𝑓:ℕ⟶𝐴)) | |
| 11 | 8, 9, 10 | sylancl 586 | . . . . . . . 8 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (𝑓 ∈ (𝐴 ↑m ℕ) ↔ 𝑓:ℕ⟶𝐴)) |
| 12 | 11 | anbi1d 631 | . . . . . . 7 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ((𝑓 ∈ (𝐴 ↑m ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥) ↔ (𝑓:ℕ⟶𝐴 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
| 13 | 12 | exbidv 1921 | . . . . . 6 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (∃𝑓(𝑓 ∈ (𝐴 ↑m ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥) ↔ ∃𝑓(𝑓:ℕ⟶𝐴 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
| 14 | 3, 13 | bitr4d 282 | . . . . 5 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓 ∈ (𝐴 ↑m ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
| 15 | df-rex 3055 | . . . . 5 ⊢ (∃𝑓 ∈ (𝐴 ↑m ℕ)𝑓(⇝𝑡‘𝐽)𝑥 ↔ ∃𝑓(𝑓 ∈ (𝐴 ↑m ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥)) | |
| 16 | 14, 15 | bitr4di 289 | . . . 4 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓 ∈ (𝐴 ↑m ℕ)𝑓(⇝𝑡‘𝐽)𝑥)) |
| 17 | vex 3454 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 18 | 17 | elima 6039 | . . . 4 ⊢ (𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝐴 ↑m ℕ)) ↔ ∃𝑓 ∈ (𝐴 ↑m ℕ)𝑓(⇝𝑡‘𝐽)𝑥) |
| 19 | 16, 18 | bitr4di 289 | . . 3 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝐴 ↑m ℕ)))) |
| 20 | 19 | eqrdv 2728 | . 2 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) = ((⇝𝑡‘𝐽) “ (𝐴 ↑m ℕ))) |
| 21 | ovex 7423 | . . 3 ⊢ (𝐴 ↑m ℕ) ∈ V | |
| 22 | lmfun 23275 | . . . 4 ⊢ (𝐽 ∈ Haus → Fun (⇝𝑡‘𝐽)) | |
| 23 | 22 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → Fun (⇝𝑡‘𝐽)) |
| 24 | imadomg 10494 | . . 3 ⊢ ((𝐴 ↑m ℕ) ∈ V → (Fun (⇝𝑡‘𝐽) → ((⇝𝑡‘𝐽) “ (𝐴 ↑m ℕ)) ≼ (𝐴 ↑m ℕ))) | |
| 25 | 21, 23, 24 | mpsyl 68 | . 2 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ((⇝𝑡‘𝐽) “ (𝐴 ↑m ℕ)) ≼ (𝐴 ↑m ℕ)) |
| 26 | 20, 25 | eqbrtrd 5132 | 1 ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴 ↑m ℕ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 ⊆ wss 3917 ∪ cuni 4874 class class class wbr 5110 “ cima 5644 Fun wfun 6508 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 ≼ cdom 8919 ℕcn 12193 clsccl 22912 ⇝𝑡clm 23120 Hauscha 23202 1stωc1stc 23331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cc 10395 ax-ac2 10423 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-acn 9902 df-ac 10076 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-top 22788 df-topon 22805 df-cld 22913 df-ntr 22914 df-cls 22915 df-lm 23123 df-haus 23209 df-1stc 23333 |
| This theorem is referenced by: hauspwdom 23395 |
| Copyright terms: Public domain | W3C validator |