| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pi1blem | Structured version Visualization version GIF version | ||
| Description: Lemma for pi1buni 24940. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| Ref | Expression |
|---|---|
| pi1val.g | ⊢ 𝐺 = (𝐽 π1 𝑌) |
| pi1val.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| pi1val.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
| pi1val.o | ⊢ 𝑂 = (𝐽 Ω1 𝑌) |
| pi1bas.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
| pi1bas.k | ⊢ (𝜑 → 𝐾 = (Base‘𝑂)) |
| Ref | Expression |
|---|---|
| pi1blem | ⊢ (𝜑 → ((( ≃ph‘𝐽) “ 𝐾) ⊆ 𝐾 ∧ 𝐾 ⊆ (II Cn 𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3451 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elima 6036 | . . . 4 ⊢ (𝑥 ∈ (( ≃ph‘𝐽) “ 𝐾) ↔ ∃𝑦 ∈ 𝐾 𝑦( ≃ph‘𝐽)𝑥) |
| 3 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦( ≃ph‘𝐽)𝑥) → 𝑦( ≃ph‘𝐽)𝑥) | |
| 4 | isphtpc 24893 | . . . . . . . . 9 ⊢ (𝑦( ≃ph‘𝐽)𝑥 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)) | |
| 5 | 3, 4 | sylib 218 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦( ≃ph‘𝐽)𝑥) → (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)) |
| 6 | 5 | adantrl 716 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)) |
| 7 | 6 | simp2d 1143 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → 𝑥 ∈ (II Cn 𝐽)) |
| 8 | phtpc01 24895 | . . . . . . . . 9 ⊢ (𝑦( ≃ph‘𝐽)𝑥 → ((𝑦‘0) = (𝑥‘0) ∧ (𝑦‘1) = (𝑥‘1))) | |
| 9 | 8 | ad2antll 729 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → ((𝑦‘0) = (𝑥‘0) ∧ (𝑦‘1) = (𝑥‘1))) |
| 10 | 9 | simpld 494 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦‘0) = (𝑥‘0)) |
| 11 | pi1val.o | . . . . . . . . . . 11 ⊢ 𝑂 = (𝐽 Ω1 𝑌) | |
| 12 | pi1val.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 13 | pi1val.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
| 14 | pi1bas.k | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐾 = (Base‘𝑂)) | |
| 15 | 11, 12, 13, 14 | om1elbas 24932 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑦 ∈ 𝐾 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌))) |
| 16 | 15 | biimpa 476 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌)) |
| 17 | 16 | adantrr 717 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌)) |
| 18 | 17 | simp2d 1143 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦‘0) = 𝑌) |
| 19 | 10, 18 | eqtr3d 2766 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑥‘0) = 𝑌) |
| 20 | 9 | simprd 495 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦‘1) = (𝑥‘1)) |
| 21 | 17 | simp3d 1144 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦‘1) = 𝑌) |
| 22 | 20, 21 | eqtr3d 2766 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑥‘1) = 𝑌) |
| 23 | 11, 12, 13, 14 | om1elbas 24932 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐾 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌))) |
| 24 | 23 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑥 ∈ 𝐾 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌))) |
| 25 | 7, 19, 22, 24 | mpbir3and 1343 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → 𝑥 ∈ 𝐾) |
| 26 | 25 | rexlimdvaa 3135 | . . . 4 ⊢ (𝜑 → (∃𝑦 ∈ 𝐾 𝑦( ≃ph‘𝐽)𝑥 → 𝑥 ∈ 𝐾)) |
| 27 | 2, 26 | biimtrid 242 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (( ≃ph‘𝐽) “ 𝐾) → 𝑥 ∈ 𝐾)) |
| 28 | 27 | ssrdv 3952 | . 2 ⊢ (𝜑 → (( ≃ph‘𝐽) “ 𝐾) ⊆ 𝐾) |
| 29 | simp1 1136 | . . . 4 ⊢ ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌) → 𝑥 ∈ (II Cn 𝐽)) | |
| 30 | 23, 29 | biimtrdi 253 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐾 → 𝑥 ∈ (II Cn 𝐽))) |
| 31 | 30 | ssrdv 3952 | . 2 ⊢ (𝜑 → 𝐾 ⊆ (II Cn 𝐽)) |
| 32 | 28, 31 | jca 511 | 1 ⊢ (𝜑 → ((( ≃ph‘𝐽) “ 𝐾) ⊆ 𝐾 ∧ 𝐾 ⊆ (II Cn 𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ⊆ wss 3914 ∅c0 4296 class class class wbr 5107 “ cima 5641 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 Basecbs 17179 TopOnctopon 22797 Cn ccn 23111 IIcii 24768 PHtpycphtpy 24867 ≃phcphtpc 24868 Ω1 comi 24901 π1 cpi1 24903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-icc 13313 df-fz 13469 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-tset 17239 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-bases 22833 df-cn 23114 df-ii 24770 df-htpy 24869 df-phtpy 24870 df-phtpc 24891 df-om1 24906 |
| This theorem is referenced by: pi1buni 24940 pi1bas3 24943 pi1addf 24947 pi1addval 24948 pi1grplem 24949 |
| Copyright terms: Public domain | W3C validator |