Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1blem Structured version   Visualization version   GIF version

Theorem pi1blem 23745
 Description: Lemma for pi1buni 23746. (Contributed by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
pi1val.g 𝐺 = (𝐽 π1 𝑌)
pi1val.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1val.2 (𝜑𝑌𝑋)
pi1val.o 𝑂 = (𝐽 Ω1 𝑌)
pi1bas.b (𝜑𝐵 = (Base‘𝐺))
pi1bas.k (𝜑𝐾 = (Base‘𝑂))
Assertion
Ref Expression
pi1blem (𝜑 → ((( ≃ph𝐽) “ 𝐾) ⊆ 𝐾𝐾 ⊆ (II Cn 𝐽)))

Proof of Theorem pi1blem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3413 . . . . 5 𝑥 ∈ V
21elima 5910 . . . 4 (𝑥 ∈ (( ≃ph𝐽) “ 𝐾) ↔ ∃𝑦𝐾 𝑦( ≃ph𝐽)𝑥)
3 simpr 488 . . . . . . . . 9 ((𝜑𝑦( ≃ph𝐽)𝑥) → 𝑦( ≃ph𝐽)𝑥)
4 isphtpc 23700 . . . . . . . . 9 (𝑦( ≃ph𝐽)𝑥 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅))
53, 4sylib 221 . . . . . . . 8 ((𝜑𝑦( ≃ph𝐽)𝑥) → (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅))
65adantrl 715 . . . . . . 7 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅))
76simp2d 1140 . . . . . 6 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → 𝑥 ∈ (II Cn 𝐽))
8 phtpc01 23702 . . . . . . . . 9 (𝑦( ≃ph𝐽)𝑥 → ((𝑦‘0) = (𝑥‘0) ∧ (𝑦‘1) = (𝑥‘1)))
98ad2antll 728 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → ((𝑦‘0) = (𝑥‘0) ∧ (𝑦‘1) = (𝑥‘1)))
109simpld 498 . . . . . . 7 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦‘0) = (𝑥‘0))
11 pi1val.o . . . . . . . . . . 11 𝑂 = (𝐽 Ω1 𝑌)
12 pi1val.1 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝑋))
13 pi1val.2 . . . . . . . . . . 11 (𝜑𝑌𝑋)
14 pi1bas.k . . . . . . . . . . 11 (𝜑𝐾 = (Base‘𝑂))
1511, 12, 13, 14om1elbas 23738 . . . . . . . . . 10 (𝜑 → (𝑦𝐾 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌)))
1615biimpa 480 . . . . . . . . 9 ((𝜑𝑦𝐾) → (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌))
1716adantrr 716 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌))
1817simp2d 1140 . . . . . . 7 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦‘0) = 𝑌)
1910, 18eqtr3d 2795 . . . . . 6 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑥‘0) = 𝑌)
209simprd 499 . . . . . . 7 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦‘1) = (𝑥‘1))
2117simp3d 1141 . . . . . . 7 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦‘1) = 𝑌)
2220, 21eqtr3d 2795 . . . . . 6 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑥‘1) = 𝑌)
2311, 12, 13, 14om1elbas 23738 . . . . . . 7 (𝜑 → (𝑥𝐾 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌)))
2423adantr 484 . . . . . 6 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑥𝐾 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌)))
257, 19, 22, 24mpbir3and 1339 . . . . 5 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → 𝑥𝐾)
2625rexlimdvaa 3209 . . . 4 (𝜑 → (∃𝑦𝐾 𝑦( ≃ph𝐽)𝑥𝑥𝐾))
272, 26syl5bi 245 . . 3 (𝜑 → (𝑥 ∈ (( ≃ph𝐽) “ 𝐾) → 𝑥𝐾))
2827ssrdv 3900 . 2 (𝜑 → (( ≃ph𝐽) “ 𝐾) ⊆ 𝐾)
29 simp1 1133 . . . 4 ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌) → 𝑥 ∈ (II Cn 𝐽))
3023, 29syl6bi 256 . . 3 (𝜑 → (𝑥𝐾𝑥 ∈ (II Cn 𝐽)))
3130ssrdv 3900 . 2 (𝜑𝐾 ⊆ (II Cn 𝐽))
3228, 31jca 515 1 (𝜑 → ((( ≃ph𝐽) “ 𝐾) ⊆ 𝐾𝐾 ⊆ (II Cn 𝐽)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  ∃wrex 3071   ⊆ wss 3860  ∅c0 4227   class class class wbr 5035   “ cima 5530  ‘cfv 6339  (class class class)co 7155  0cc0 10580  1c1 10581  Basecbs 16546  TopOnctopon 21615   Cn ccn 21929  IIcii 23581  PHtpycphtpy 23674   ≃phcphtpc 23675   Ω1 comi 23707   π1 cpi1 23709 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-pre-sup 10658 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-map 8423  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-sup 8944  df-inf 8945  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-7 11747  df-8 11748  df-9 11749  df-n0 11940  df-z 12026  df-uz 12288  df-q 12394  df-rp 12436  df-xneg 12553  df-xadd 12554  df-xmul 12555  df-icc 12791  df-fz 12945  df-seq 13424  df-exp 13485  df-cj 14511  df-re 14512  df-im 14513  df-sqrt 14647  df-abs 14648  df-struct 16548  df-ndx 16549  df-slot 16550  df-base 16552  df-plusg 16641  df-tset 16647  df-topgen 16780  df-psmet 20163  df-xmet 20164  df-met 20165  df-bl 20166  df-mopn 20167  df-top 21599  df-topon 21616  df-bases 21651  df-cn 21932  df-ii 23583  df-htpy 23676  df-phtpy 23677  df-phtpc 23698  df-om1 23712 This theorem is referenced by:  pi1buni  23746  pi1bas3  23749  pi1addf  23753  pi1addval  23754  pi1grplem  23755
 Copyright terms: Public domain W3C validator