MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1blem Structured version   Visualization version   GIF version

Theorem pi1blem 23745
Description: Lemma for pi1buni 23746. (Contributed by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
pi1val.g 𝐺 = (𝐽 π1 𝑌)
pi1val.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1val.2 (𝜑𝑌𝑋)
pi1val.o 𝑂 = (𝐽 Ω1 𝑌)
pi1bas.b (𝜑𝐵 = (Base‘𝐺))
pi1bas.k (𝜑𝐾 = (Base‘𝑂))
Assertion
Ref Expression
pi1blem (𝜑 → ((( ≃ph𝐽) “ 𝐾) ⊆ 𝐾𝐾 ⊆ (II Cn 𝐽)))

Proof of Theorem pi1blem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3413 . . . . 5 𝑥 ∈ V
21elima 5910 . . . 4 (𝑥 ∈ (( ≃ph𝐽) “ 𝐾) ↔ ∃𝑦𝐾 𝑦( ≃ph𝐽)𝑥)
3 simpr 488 . . . . . . . . 9 ((𝜑𝑦( ≃ph𝐽)𝑥) → 𝑦( ≃ph𝐽)𝑥)
4 isphtpc 23700 . . . . . . . . 9 (𝑦( ≃ph𝐽)𝑥 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅))
53, 4sylib 221 . . . . . . . 8 ((𝜑𝑦( ≃ph𝐽)𝑥) → (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅))
65adantrl 715 . . . . . . 7 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅))
76simp2d 1140 . . . . . 6 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → 𝑥 ∈ (II Cn 𝐽))
8 phtpc01 23702 . . . . . . . . 9 (𝑦( ≃ph𝐽)𝑥 → ((𝑦‘0) = (𝑥‘0) ∧ (𝑦‘1) = (𝑥‘1)))
98ad2antll 728 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → ((𝑦‘0) = (𝑥‘0) ∧ (𝑦‘1) = (𝑥‘1)))
109simpld 498 . . . . . . 7 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦‘0) = (𝑥‘0))
11 pi1val.o . . . . . . . . . . 11 𝑂 = (𝐽 Ω1 𝑌)
12 pi1val.1 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝑋))
13 pi1val.2 . . . . . . . . . . 11 (𝜑𝑌𝑋)
14 pi1bas.k . . . . . . . . . . 11 (𝜑𝐾 = (Base‘𝑂))
1511, 12, 13, 14om1elbas 23738 . . . . . . . . . 10 (𝜑 → (𝑦𝐾 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌)))
1615biimpa 480 . . . . . . . . 9 ((𝜑𝑦𝐾) → (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌))
1716adantrr 716 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌))
1817simp2d 1140 . . . . . . 7 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦‘0) = 𝑌)
1910, 18eqtr3d 2795 . . . . . 6 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑥‘0) = 𝑌)
209simprd 499 . . . . . . 7 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦‘1) = (𝑥‘1))
2117simp3d 1141 . . . . . . 7 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦‘1) = 𝑌)
2220, 21eqtr3d 2795 . . . . . 6 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑥‘1) = 𝑌)
2311, 12, 13, 14om1elbas 23738 . . . . . . 7 (𝜑 → (𝑥𝐾 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌)))
2423adantr 484 . . . . . 6 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑥𝐾 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌)))
257, 19, 22, 24mpbir3and 1339 . . . . 5 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → 𝑥𝐾)
2625rexlimdvaa 3209 . . . 4 (𝜑 → (∃𝑦𝐾 𝑦( ≃ph𝐽)𝑥𝑥𝐾))
272, 26syl5bi 245 . . 3 (𝜑 → (𝑥 ∈ (( ≃ph𝐽) “ 𝐾) → 𝑥𝐾))
2827ssrdv 3900 . 2 (𝜑 → (( ≃ph𝐽) “ 𝐾) ⊆ 𝐾)
29 simp1 1133 . . . 4 ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌) → 𝑥 ∈ (II Cn 𝐽))
3023, 29syl6bi 256 . . 3 (𝜑 → (𝑥𝐾𝑥 ∈ (II Cn 𝐽)))
3130ssrdv 3900 . 2 (𝜑𝐾 ⊆ (II Cn 𝐽))
3228, 31jca 515 1 (𝜑 → ((( ≃ph𝐽) “ 𝐾) ⊆ 𝐾𝐾 ⊆ (II Cn 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  wrex 3071  wss 3860  c0 4227   class class class wbr 5035  cima 5530  cfv 6339  (class class class)co 7155  0cc0 10580  1c1 10581  Basecbs 16546  TopOnctopon 21615   Cn ccn 21929  IIcii 23581  PHtpycphtpy 23674  phcphtpc 23675   Ω1 comi 23707   π1 cpi1 23709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-pre-sup 10658
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-map 8423  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-sup 8944  df-inf 8945  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-7 11747  df-8 11748  df-9 11749  df-n0 11940  df-z 12026  df-uz 12288  df-q 12394  df-rp 12436  df-xneg 12553  df-xadd 12554  df-xmul 12555  df-icc 12791  df-fz 12945  df-seq 13424  df-exp 13485  df-cj 14511  df-re 14512  df-im 14513  df-sqrt 14647  df-abs 14648  df-struct 16548  df-ndx 16549  df-slot 16550  df-base 16552  df-plusg 16641  df-tset 16647  df-topgen 16780  df-psmet 20163  df-xmet 20164  df-met 20165  df-bl 20166  df-mopn 20167  df-top 21599  df-topon 21616  df-bases 21651  df-cn 21932  df-ii 23583  df-htpy 23676  df-phtpy 23677  df-phtpc 23698  df-om1 23712
This theorem is referenced by:  pi1buni  23746  pi1bas3  23749  pi1addf  23753  pi1addval  23754  pi1grplem  23755
  Copyright terms: Public domain W3C validator