Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pi1blem | Structured version Visualization version GIF version |
Description: Lemma for pi1buni 23746. (Contributed by Mario Carneiro, 10-Jul-2015.) |
Ref | Expression |
---|---|
pi1val.g | ⊢ 𝐺 = (𝐽 π1 𝑌) |
pi1val.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
pi1val.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
pi1val.o | ⊢ 𝑂 = (𝐽 Ω1 𝑌) |
pi1bas.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
pi1bas.k | ⊢ (𝜑 → 𝐾 = (Base‘𝑂)) |
Ref | Expression |
---|---|
pi1blem | ⊢ (𝜑 → ((( ≃ph‘𝐽) “ 𝐾) ⊆ 𝐾 ∧ 𝐾 ⊆ (II Cn 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3413 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | elima 5910 | . . . 4 ⊢ (𝑥 ∈ (( ≃ph‘𝐽) “ 𝐾) ↔ ∃𝑦 ∈ 𝐾 𝑦( ≃ph‘𝐽)𝑥) |
3 | simpr 488 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦( ≃ph‘𝐽)𝑥) → 𝑦( ≃ph‘𝐽)𝑥) | |
4 | isphtpc 23700 | . . . . . . . . 9 ⊢ (𝑦( ≃ph‘𝐽)𝑥 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)) | |
5 | 3, 4 | sylib 221 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦( ≃ph‘𝐽)𝑥) → (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)) |
6 | 5 | adantrl 715 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)) |
7 | 6 | simp2d 1140 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → 𝑥 ∈ (II Cn 𝐽)) |
8 | phtpc01 23702 | . . . . . . . . 9 ⊢ (𝑦( ≃ph‘𝐽)𝑥 → ((𝑦‘0) = (𝑥‘0) ∧ (𝑦‘1) = (𝑥‘1))) | |
9 | 8 | ad2antll 728 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → ((𝑦‘0) = (𝑥‘0) ∧ (𝑦‘1) = (𝑥‘1))) |
10 | 9 | simpld 498 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦‘0) = (𝑥‘0)) |
11 | pi1val.o | . . . . . . . . . . 11 ⊢ 𝑂 = (𝐽 Ω1 𝑌) | |
12 | pi1val.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
13 | pi1val.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
14 | pi1bas.k | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐾 = (Base‘𝑂)) | |
15 | 11, 12, 13, 14 | om1elbas 23738 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑦 ∈ 𝐾 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌))) |
16 | 15 | biimpa 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌)) |
17 | 16 | adantrr 716 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌)) |
18 | 17 | simp2d 1140 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦‘0) = 𝑌) |
19 | 10, 18 | eqtr3d 2795 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑥‘0) = 𝑌) |
20 | 9 | simprd 499 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦‘1) = (𝑥‘1)) |
21 | 17 | simp3d 1141 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦‘1) = 𝑌) |
22 | 20, 21 | eqtr3d 2795 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑥‘1) = 𝑌) |
23 | 11, 12, 13, 14 | om1elbas 23738 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐾 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌))) |
24 | 23 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑥 ∈ 𝐾 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌))) |
25 | 7, 19, 22, 24 | mpbir3and 1339 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → 𝑥 ∈ 𝐾) |
26 | 25 | rexlimdvaa 3209 | . . . 4 ⊢ (𝜑 → (∃𝑦 ∈ 𝐾 𝑦( ≃ph‘𝐽)𝑥 → 𝑥 ∈ 𝐾)) |
27 | 2, 26 | syl5bi 245 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (( ≃ph‘𝐽) “ 𝐾) → 𝑥 ∈ 𝐾)) |
28 | 27 | ssrdv 3900 | . 2 ⊢ (𝜑 → (( ≃ph‘𝐽) “ 𝐾) ⊆ 𝐾) |
29 | simp1 1133 | . . . 4 ⊢ ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌) → 𝑥 ∈ (II Cn 𝐽)) | |
30 | 23, 29 | syl6bi 256 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐾 → 𝑥 ∈ (II Cn 𝐽))) |
31 | 30 | ssrdv 3900 | . 2 ⊢ (𝜑 → 𝐾 ⊆ (II Cn 𝐽)) |
32 | 28, 31 | jca 515 | 1 ⊢ (𝜑 → ((( ≃ph‘𝐽) “ 𝐾) ⊆ 𝐾 ∧ 𝐾 ⊆ (II Cn 𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∃wrex 3071 ⊆ wss 3860 ∅c0 4227 class class class wbr 5035 “ cima 5530 ‘cfv 6339 (class class class)co 7155 0cc0 10580 1c1 10581 Basecbs 16546 TopOnctopon 21615 Cn ccn 21929 IIcii 23581 PHtpycphtpy 23674 ≃phcphtpc 23675 Ω1 comi 23707 π1 cpi1 23709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-pre-sup 10658 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-er 8304 df-map 8423 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-sup 8944 df-inf 8945 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-7 11747 df-8 11748 df-9 11749 df-n0 11940 df-z 12026 df-uz 12288 df-q 12394 df-rp 12436 df-xneg 12553 df-xadd 12554 df-xmul 12555 df-icc 12791 df-fz 12945 df-seq 13424 df-exp 13485 df-cj 14511 df-re 14512 df-im 14513 df-sqrt 14647 df-abs 14648 df-struct 16548 df-ndx 16549 df-slot 16550 df-base 16552 df-plusg 16641 df-tset 16647 df-topgen 16780 df-psmet 20163 df-xmet 20164 df-met 20165 df-bl 20166 df-mopn 20167 df-top 21599 df-topon 21616 df-bases 21651 df-cn 21932 df-ii 23583 df-htpy 23676 df-phtpy 23677 df-phtpc 23698 df-om1 23712 |
This theorem is referenced by: pi1buni 23746 pi1bas3 23749 pi1addf 23753 pi1addval 23754 pi1grplem 23755 |
Copyright terms: Public domain | W3C validator |