| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pi1blem | Structured version Visualization version GIF version | ||
| Description: Lemma for pi1buni 24916. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| Ref | Expression |
|---|---|
| pi1val.g | ⊢ 𝐺 = (𝐽 π1 𝑌) |
| pi1val.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| pi1val.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
| pi1val.o | ⊢ 𝑂 = (𝐽 Ω1 𝑌) |
| pi1bas.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
| pi1bas.k | ⊢ (𝜑 → 𝐾 = (Base‘𝑂)) |
| Ref | Expression |
|---|---|
| pi1blem | ⊢ (𝜑 → ((( ≃ph‘𝐽) “ 𝐾) ⊆ 𝐾 ∧ 𝐾 ⊆ (II Cn 𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3448 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elima 6025 | . . . 4 ⊢ (𝑥 ∈ (( ≃ph‘𝐽) “ 𝐾) ↔ ∃𝑦 ∈ 𝐾 𝑦( ≃ph‘𝐽)𝑥) |
| 3 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦( ≃ph‘𝐽)𝑥) → 𝑦( ≃ph‘𝐽)𝑥) | |
| 4 | isphtpc 24869 | . . . . . . . . 9 ⊢ (𝑦( ≃ph‘𝐽)𝑥 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)) | |
| 5 | 3, 4 | sylib 218 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦( ≃ph‘𝐽)𝑥) → (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)) |
| 6 | 5 | adantrl 716 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)) |
| 7 | 6 | simp2d 1143 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → 𝑥 ∈ (II Cn 𝐽)) |
| 8 | phtpc01 24871 | . . . . . . . . 9 ⊢ (𝑦( ≃ph‘𝐽)𝑥 → ((𝑦‘0) = (𝑥‘0) ∧ (𝑦‘1) = (𝑥‘1))) | |
| 9 | 8 | ad2antll 729 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → ((𝑦‘0) = (𝑥‘0) ∧ (𝑦‘1) = (𝑥‘1))) |
| 10 | 9 | simpld 494 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦‘0) = (𝑥‘0)) |
| 11 | pi1val.o | . . . . . . . . . . 11 ⊢ 𝑂 = (𝐽 Ω1 𝑌) | |
| 12 | pi1val.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 13 | pi1val.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
| 14 | pi1bas.k | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐾 = (Base‘𝑂)) | |
| 15 | 11, 12, 13, 14 | om1elbas 24908 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑦 ∈ 𝐾 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌))) |
| 16 | 15 | biimpa 476 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌)) |
| 17 | 16 | adantrr 717 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌)) |
| 18 | 17 | simp2d 1143 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦‘0) = 𝑌) |
| 19 | 10, 18 | eqtr3d 2766 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑥‘0) = 𝑌) |
| 20 | 9 | simprd 495 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦‘1) = (𝑥‘1)) |
| 21 | 17 | simp3d 1144 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦‘1) = 𝑌) |
| 22 | 20, 21 | eqtr3d 2766 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑥‘1) = 𝑌) |
| 23 | 11, 12, 13, 14 | om1elbas 24908 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐾 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌))) |
| 24 | 23 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑥 ∈ 𝐾 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌))) |
| 25 | 7, 19, 22, 24 | mpbir3and 1343 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → 𝑥 ∈ 𝐾) |
| 26 | 25 | rexlimdvaa 3135 | . . . 4 ⊢ (𝜑 → (∃𝑦 ∈ 𝐾 𝑦( ≃ph‘𝐽)𝑥 → 𝑥 ∈ 𝐾)) |
| 27 | 2, 26 | biimtrid 242 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (( ≃ph‘𝐽) “ 𝐾) → 𝑥 ∈ 𝐾)) |
| 28 | 27 | ssrdv 3949 | . 2 ⊢ (𝜑 → (( ≃ph‘𝐽) “ 𝐾) ⊆ 𝐾) |
| 29 | simp1 1136 | . . . 4 ⊢ ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌) → 𝑥 ∈ (II Cn 𝐽)) | |
| 30 | 23, 29 | biimtrdi 253 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐾 → 𝑥 ∈ (II Cn 𝐽))) |
| 31 | 30 | ssrdv 3949 | . 2 ⊢ (𝜑 → 𝐾 ⊆ (II Cn 𝐽)) |
| 32 | 28, 31 | jca 511 | 1 ⊢ (𝜑 → ((( ≃ph‘𝐽) “ 𝐾) ⊆ 𝐾 ∧ 𝐾 ⊆ (II Cn 𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ⊆ wss 3911 ∅c0 4292 class class class wbr 5102 “ cima 5634 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 Basecbs 17155 TopOnctopon 22773 Cn ccn 23087 IIcii 24744 PHtpycphtpy 24843 ≃phcphtpc 24844 Ω1 comi 24877 π1 cpi1 24879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-icc 13289 df-fz 13445 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-tset 17215 df-topgen 17382 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-top 22757 df-topon 22774 df-bases 22809 df-cn 23090 df-ii 24746 df-htpy 24845 df-phtpy 24846 df-phtpc 24867 df-om1 24882 |
| This theorem is referenced by: pi1buni 24916 pi1bas3 24919 pi1addf 24923 pi1addval 24924 pi1grplem 24925 |
| Copyright terms: Public domain | W3C validator |