MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1blem Structured version   Visualization version   GIF version

Theorem pi1blem 24247
Description: Lemma for pi1buni 24248. (Contributed by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
pi1val.g 𝐺 = (𝐽 π1 𝑌)
pi1val.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1val.2 (𝜑𝑌𝑋)
pi1val.o 𝑂 = (𝐽 Ω1 𝑌)
pi1bas.b (𝜑𝐵 = (Base‘𝐺))
pi1bas.k (𝜑𝐾 = (Base‘𝑂))
Assertion
Ref Expression
pi1blem (𝜑 → ((( ≃ph𝐽) “ 𝐾) ⊆ 𝐾𝐾 ⊆ (II Cn 𝐽)))

Proof of Theorem pi1blem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3441 . . . . 5 𝑥 ∈ V
21elima 5984 . . . 4 (𝑥 ∈ (( ≃ph𝐽) “ 𝐾) ↔ ∃𝑦𝐾 𝑦( ≃ph𝐽)𝑥)
3 simpr 486 . . . . . . . . 9 ((𝜑𝑦( ≃ph𝐽)𝑥) → 𝑦( ≃ph𝐽)𝑥)
4 isphtpc 24202 . . . . . . . . 9 (𝑦( ≃ph𝐽)𝑥 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅))
53, 4sylib 217 . . . . . . . 8 ((𝜑𝑦( ≃ph𝐽)𝑥) → (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅))
65adantrl 714 . . . . . . 7 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅))
76simp2d 1143 . . . . . 6 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → 𝑥 ∈ (II Cn 𝐽))
8 phtpc01 24204 . . . . . . . . 9 (𝑦( ≃ph𝐽)𝑥 → ((𝑦‘0) = (𝑥‘0) ∧ (𝑦‘1) = (𝑥‘1)))
98ad2antll 727 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → ((𝑦‘0) = (𝑥‘0) ∧ (𝑦‘1) = (𝑥‘1)))
109simpld 496 . . . . . . 7 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦‘0) = (𝑥‘0))
11 pi1val.o . . . . . . . . . . 11 𝑂 = (𝐽 Ω1 𝑌)
12 pi1val.1 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝑋))
13 pi1val.2 . . . . . . . . . . 11 (𝜑𝑌𝑋)
14 pi1bas.k . . . . . . . . . . 11 (𝜑𝐾 = (Base‘𝑂))
1511, 12, 13, 14om1elbas 24240 . . . . . . . . . 10 (𝜑 → (𝑦𝐾 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌)))
1615biimpa 478 . . . . . . . . 9 ((𝜑𝑦𝐾) → (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌))
1716adantrr 715 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌))
1817simp2d 1143 . . . . . . 7 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦‘0) = 𝑌)
1910, 18eqtr3d 2778 . . . . . 6 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑥‘0) = 𝑌)
209simprd 497 . . . . . . 7 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦‘1) = (𝑥‘1))
2117simp3d 1144 . . . . . . 7 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑦‘1) = 𝑌)
2220, 21eqtr3d 2778 . . . . . 6 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑥‘1) = 𝑌)
2311, 12, 13, 14om1elbas 24240 . . . . . . 7 (𝜑 → (𝑥𝐾 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌)))
2423adantr 482 . . . . . 6 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → (𝑥𝐾 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌)))
257, 19, 22, 24mpbir3and 1342 . . . . 5 ((𝜑 ∧ (𝑦𝐾𝑦( ≃ph𝐽)𝑥)) → 𝑥𝐾)
2625rexlimdvaa 3150 . . . 4 (𝜑 → (∃𝑦𝐾 𝑦( ≃ph𝐽)𝑥𝑥𝐾))
272, 26biimtrid 241 . . 3 (𝜑 → (𝑥 ∈ (( ≃ph𝐽) “ 𝐾) → 𝑥𝐾))
2827ssrdv 3932 . 2 (𝜑 → (( ≃ph𝐽) “ 𝐾) ⊆ 𝐾)
29 simp1 1136 . . . 4 ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌) → 𝑥 ∈ (II Cn 𝐽))
3023, 29syl6bi 253 . . 3 (𝜑 → (𝑥𝐾𝑥 ∈ (II Cn 𝐽)))
3130ssrdv 3932 . 2 (𝜑𝐾 ⊆ (II Cn 𝐽))
3228, 31jca 513 1 (𝜑 → ((( ≃ph𝐽) “ 𝐾) ⊆ 𝐾𝐾 ⊆ (II Cn 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1539  wcel 2104  wne 2941  wrex 3071  wss 3892  c0 4262   class class class wbr 5081  cima 5603  cfv 6458  (class class class)co 7307  0cc0 10917  1c1 10918  Basecbs 16957  TopOnctopon 22104   Cn ccn 22420  IIcii 24083  PHtpycphtpy 24176  phcphtpc 24177   Ω1 comi 24209   π1 cpi1 24211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-pre-sup 10995
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-sup 9245  df-inf 9246  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-5 12085  df-6 12086  df-7 12087  df-8 12088  df-9 12089  df-n0 12280  df-z 12366  df-uz 12629  df-q 12735  df-rp 12777  df-xneg 12894  df-xadd 12895  df-xmul 12896  df-icc 13132  df-fz 13286  df-seq 13768  df-exp 13829  df-cj 14855  df-re 14856  df-im 14857  df-sqrt 14991  df-abs 14992  df-struct 16893  df-slot 16928  df-ndx 16940  df-base 16958  df-plusg 17020  df-tset 17026  df-topgen 17199  df-psmet 20634  df-xmet 20635  df-met 20636  df-bl 20637  df-mopn 20638  df-top 22088  df-topon 22105  df-bases 22141  df-cn 22423  df-ii 24085  df-htpy 24178  df-phtpy 24179  df-phtpc 24200  df-om1 24214
This theorem is referenced by:  pi1buni  24248  pi1bas3  24251  pi1addf  24255  pi1addval  24256  pi1grplem  24257
  Copyright terms: Public domain W3C validator