| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pi1blem | Structured version Visualization version GIF version | ||
| Description: Lemma for pi1buni 24938. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| Ref | Expression |
|---|---|
| pi1val.g | ⊢ 𝐺 = (𝐽 π1 𝑌) |
| pi1val.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| pi1val.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
| pi1val.o | ⊢ 𝑂 = (𝐽 Ω1 𝑌) |
| pi1bas.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
| pi1bas.k | ⊢ (𝜑 → 𝐾 = (Base‘𝑂)) |
| Ref | Expression |
|---|---|
| pi1blem | ⊢ (𝜑 → ((( ≃ph‘𝐽) “ 𝐾) ⊆ 𝐾 ∧ 𝐾 ⊆ (II Cn 𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elima 6016 | . . . 4 ⊢ (𝑥 ∈ (( ≃ph‘𝐽) “ 𝐾) ↔ ∃𝑦 ∈ 𝐾 𝑦( ≃ph‘𝐽)𝑥) |
| 3 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦( ≃ph‘𝐽)𝑥) → 𝑦( ≃ph‘𝐽)𝑥) | |
| 4 | isphtpc 24891 | . . . . . . . . 9 ⊢ (𝑦( ≃ph‘𝐽)𝑥 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)) | |
| 5 | 3, 4 | sylib 218 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦( ≃ph‘𝐽)𝑥) → (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)) |
| 6 | 5 | adantrl 716 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)) |
| 7 | 6 | simp2d 1143 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → 𝑥 ∈ (II Cn 𝐽)) |
| 8 | phtpc01 24893 | . . . . . . . . 9 ⊢ (𝑦( ≃ph‘𝐽)𝑥 → ((𝑦‘0) = (𝑥‘0) ∧ (𝑦‘1) = (𝑥‘1))) | |
| 9 | 8 | ad2antll 729 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → ((𝑦‘0) = (𝑥‘0) ∧ (𝑦‘1) = (𝑥‘1))) |
| 10 | 9 | simpld 494 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦‘0) = (𝑥‘0)) |
| 11 | pi1val.o | . . . . . . . . . . 11 ⊢ 𝑂 = (𝐽 Ω1 𝑌) | |
| 12 | pi1val.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 13 | pi1val.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
| 14 | pi1bas.k | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐾 = (Base‘𝑂)) | |
| 15 | 11, 12, 13, 14 | om1elbas 24930 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑦 ∈ 𝐾 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌))) |
| 16 | 15 | biimpa 476 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌)) |
| 17 | 16 | adantrr 717 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌)) |
| 18 | 17 | simp2d 1143 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦‘0) = 𝑌) |
| 19 | 10, 18 | eqtr3d 2766 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑥‘0) = 𝑌) |
| 20 | 9 | simprd 495 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦‘1) = (𝑥‘1)) |
| 21 | 17 | simp3d 1144 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦‘1) = 𝑌) |
| 22 | 20, 21 | eqtr3d 2766 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑥‘1) = 𝑌) |
| 23 | 11, 12, 13, 14 | om1elbas 24930 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐾 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌))) |
| 24 | 23 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑥 ∈ 𝐾 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌))) |
| 25 | 7, 19, 22, 24 | mpbir3and 1343 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → 𝑥 ∈ 𝐾) |
| 26 | 25 | rexlimdvaa 3131 | . . . 4 ⊢ (𝜑 → (∃𝑦 ∈ 𝐾 𝑦( ≃ph‘𝐽)𝑥 → 𝑥 ∈ 𝐾)) |
| 27 | 2, 26 | biimtrid 242 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (( ≃ph‘𝐽) “ 𝐾) → 𝑥 ∈ 𝐾)) |
| 28 | 27 | ssrdv 3941 | . 2 ⊢ (𝜑 → (( ≃ph‘𝐽) “ 𝐾) ⊆ 𝐾) |
| 29 | simp1 1136 | . . . 4 ⊢ ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌) → 𝑥 ∈ (II Cn 𝐽)) | |
| 30 | 23, 29 | biimtrdi 253 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐾 → 𝑥 ∈ (II Cn 𝐽))) |
| 31 | 30 | ssrdv 3941 | . 2 ⊢ (𝜑 → 𝐾 ⊆ (II Cn 𝐽)) |
| 32 | 28, 31 | jca 511 | 1 ⊢ (𝜑 → ((( ≃ph‘𝐽) “ 𝐾) ⊆ 𝐾 ∧ 𝐾 ⊆ (II Cn 𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ⊆ wss 3903 ∅c0 4284 class class class wbr 5092 “ cima 5622 ‘cfv 6482 (class class class)co 7349 0cc0 11009 1c1 11010 Basecbs 17120 TopOnctopon 22795 Cn ccn 23109 IIcii 24766 PHtpycphtpy 24865 ≃phcphtpc 24866 Ω1 comi 24899 π1 cpi1 24901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-icc 13255 df-fz 13411 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-tset 17180 df-topgen 17347 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-top 22779 df-topon 22796 df-bases 22831 df-cn 23112 df-ii 24768 df-htpy 24867 df-phtpy 24868 df-phtpc 24889 df-om1 24904 |
| This theorem is referenced by: pi1buni 24938 pi1bas3 24941 pi1addf 24945 pi1addval 24946 pi1grplem 24947 |
| Copyright terms: Public domain | W3C validator |