![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pi1blem | Structured version Visualization version GIF version |
Description: Lemma for pi1buni 24485. (Contributed by Mario Carneiro, 10-Jul-2015.) |
Ref | Expression |
---|---|
pi1val.g | ⊢ 𝐺 = (𝐽 π1 𝑌) |
pi1val.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
pi1val.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
pi1val.o | ⊢ 𝑂 = (𝐽 Ω1 𝑌) |
pi1bas.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
pi1bas.k | ⊢ (𝜑 → 𝐾 = (Base‘𝑂)) |
Ref | Expression |
---|---|
pi1blem | ⊢ (𝜑 → ((( ≃ph‘𝐽) “ 𝐾) ⊆ 𝐾 ∧ 𝐾 ⊆ (II Cn 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3477 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | elima 6054 | . . . 4 ⊢ (𝑥 ∈ (( ≃ph‘𝐽) “ 𝐾) ↔ ∃𝑦 ∈ 𝐾 𝑦( ≃ph‘𝐽)𝑥) |
3 | simpr 485 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦( ≃ph‘𝐽)𝑥) → 𝑦( ≃ph‘𝐽)𝑥) | |
4 | isphtpc 24439 | . . . . . . . . 9 ⊢ (𝑦( ≃ph‘𝐽)𝑥 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)) | |
5 | 3, 4 | sylib 217 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦( ≃ph‘𝐽)𝑥) → (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)) |
6 | 5 | adantrl 714 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)) |
7 | 6 | simp2d 1143 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → 𝑥 ∈ (II Cn 𝐽)) |
8 | phtpc01 24441 | . . . . . . . . 9 ⊢ (𝑦( ≃ph‘𝐽)𝑥 → ((𝑦‘0) = (𝑥‘0) ∧ (𝑦‘1) = (𝑥‘1))) | |
9 | 8 | ad2antll 727 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → ((𝑦‘0) = (𝑥‘0) ∧ (𝑦‘1) = (𝑥‘1))) |
10 | 9 | simpld 495 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦‘0) = (𝑥‘0)) |
11 | pi1val.o | . . . . . . . . . . 11 ⊢ 𝑂 = (𝐽 Ω1 𝑌) | |
12 | pi1val.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
13 | pi1val.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
14 | pi1bas.k | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐾 = (Base‘𝑂)) | |
15 | 11, 12, 13, 14 | om1elbas 24477 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑦 ∈ 𝐾 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌))) |
16 | 15 | biimpa 477 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌)) |
17 | 16 | adantrr 715 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌)) |
18 | 17 | simp2d 1143 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦‘0) = 𝑌) |
19 | 10, 18 | eqtr3d 2773 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑥‘0) = 𝑌) |
20 | 9 | simprd 496 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦‘1) = (𝑥‘1)) |
21 | 17 | simp3d 1144 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑦‘1) = 𝑌) |
22 | 20, 21 | eqtr3d 2773 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑥‘1) = 𝑌) |
23 | 11, 12, 13, 14 | om1elbas 24477 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐾 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌))) |
24 | 23 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → (𝑥 ∈ 𝐾 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌))) |
25 | 7, 19, 22, 24 | mpbir3and 1342 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐾 ∧ 𝑦( ≃ph‘𝐽)𝑥)) → 𝑥 ∈ 𝐾) |
26 | 25 | rexlimdvaa 3155 | . . . 4 ⊢ (𝜑 → (∃𝑦 ∈ 𝐾 𝑦( ≃ph‘𝐽)𝑥 → 𝑥 ∈ 𝐾)) |
27 | 2, 26 | biimtrid 241 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (( ≃ph‘𝐽) “ 𝐾) → 𝑥 ∈ 𝐾)) |
28 | 27 | ssrdv 3984 | . 2 ⊢ (𝜑 → (( ≃ph‘𝐽) “ 𝐾) ⊆ 𝐾) |
29 | simp1 1136 | . . . 4 ⊢ ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌) → 𝑥 ∈ (II Cn 𝐽)) | |
30 | 23, 29 | syl6bi 252 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐾 → 𝑥 ∈ (II Cn 𝐽))) |
31 | 30 | ssrdv 3984 | . 2 ⊢ (𝜑 → 𝐾 ⊆ (II Cn 𝐽)) |
32 | 28, 31 | jca 512 | 1 ⊢ (𝜑 → ((( ≃ph‘𝐽) “ 𝐾) ⊆ 𝐾 ∧ 𝐾 ⊆ (II Cn 𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2939 ∃wrex 3069 ⊆ wss 3944 ∅c0 4318 class class class wbr 5141 “ cima 5672 ‘cfv 6532 (class class class)co 7393 0cc0 11092 1c1 11093 Basecbs 17126 TopOnctopon 22341 Cn ccn 22657 IIcii 24320 PHtpycphtpy 24413 ≃phcphtpc 24414 Ω1 comi 24446 π1 cpi1 24448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 ax-pre-sup 11170 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-er 8686 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-sup 9419 df-inf 9420 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-div 11854 df-nn 12195 df-2 12257 df-3 12258 df-4 12259 df-5 12260 df-6 12261 df-7 12262 df-8 12263 df-9 12264 df-n0 12455 df-z 12541 df-uz 12805 df-q 12915 df-rp 12957 df-xneg 13074 df-xadd 13075 df-xmul 13076 df-icc 13313 df-fz 13467 df-seq 13949 df-exp 14010 df-cj 15028 df-re 15029 df-im 15030 df-sqrt 15164 df-abs 15165 df-struct 17062 df-slot 17097 df-ndx 17109 df-base 17127 df-plusg 17192 df-tset 17198 df-topgen 17371 df-psmet 20870 df-xmet 20871 df-met 20872 df-bl 20873 df-mopn 20874 df-top 22325 df-topon 22342 df-bases 22378 df-cn 22660 df-ii 24322 df-htpy 24415 df-phtpy 24416 df-phtpc 24437 df-om1 24451 |
This theorem is referenced by: pi1buni 24485 pi1bas3 24488 pi1addf 24492 pi1addval 24493 pi1grplem 24494 |
Copyright terms: Public domain | W3C validator |