Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fv1stcnv Structured version   Visualization version   GIF version

Theorem fv1stcnv 35736
Description: The value of the converse of 1st restricted to a singleton. (Contributed by Scott Fenton, 2-Jul-2020.)
Assertion
Ref Expression
fv1stcnv ((𝑋𝐴𝑌𝑉) → ((1st ↾ (𝐴 × {𝑌}))‘𝑋) = ⟨𝑋, 𝑌⟩)

Proof of Theorem fv1stcnv
StepHypRef Expression
1 snidg 4640 . . . . 5 (𝑌𝑉𝑌 ∈ {𝑌})
21anim2i 617 . . . 4 ((𝑋𝐴𝑌𝑉) → (𝑋𝐴𝑌 ∈ {𝑌}))
3 eqid 2734 . . . 4 𝑋 = 𝑋
42, 3jctir 520 . . 3 ((𝑋𝐴𝑌𝑉) → ((𝑋𝐴𝑌 ∈ {𝑌}) ∧ 𝑋 = 𝑋))
5 opex 5449 . . . . . . 7 𝑋, 𝑌⟩ ∈ V
6 brcnvg 5870 . . . . . . 7 ((𝑋𝐴 ∧ ⟨𝑋, 𝑌⟩ ∈ V) → (𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩ ↔ ⟨𝑋, 𝑌⟩(1st ↾ (𝐴 × {𝑌}))𝑋))
75, 6mpan2 691 . . . . . 6 (𝑋𝐴 → (𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩ ↔ ⟨𝑋, 𝑌⟩(1st ↾ (𝐴 × {𝑌}))𝑋))
8 brres 5984 . . . . . 6 (𝑋𝐴 → (⟨𝑋, 𝑌⟩(1st ↾ (𝐴 × {𝑌}))𝑋 ↔ (⟨𝑋, 𝑌⟩ ∈ (𝐴 × {𝑌}) ∧ ⟨𝑋, 𝑌⟩1st 𝑋)))
97, 8bitrd 279 . . . . 5 (𝑋𝐴 → (𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩ ↔ (⟨𝑋, 𝑌⟩ ∈ (𝐴 × {𝑌}) ∧ ⟨𝑋, 𝑌⟩1st 𝑋)))
109adantr 480 . . . 4 ((𝑋𝐴𝑌𝑉) → (𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩ ↔ (⟨𝑋, 𝑌⟩ ∈ (𝐴 × {𝑌}) ∧ ⟨𝑋, 𝑌⟩1st 𝑋)))
11 opelxp 5701 . . . . . 6 (⟨𝑋, 𝑌⟩ ∈ (𝐴 × {𝑌}) ↔ (𝑋𝐴𝑌 ∈ {𝑌}))
1211anbi1i 624 . . . . 5 ((⟨𝑋, 𝑌⟩ ∈ (𝐴 × {𝑌}) ∧ ⟨𝑋, 𝑌⟩1st 𝑋) ↔ ((𝑋𝐴𝑌 ∈ {𝑌}) ∧ ⟨𝑋, 𝑌⟩1st 𝑋))
13 br1steqg 8018 . . . . . 6 ((𝑋𝐴𝑌𝑉) → (⟨𝑋, 𝑌⟩1st 𝑋𝑋 = 𝑋))
1413anbi2d 630 . . . . 5 ((𝑋𝐴𝑌𝑉) → (((𝑋𝐴𝑌 ∈ {𝑌}) ∧ ⟨𝑋, 𝑌⟩1st 𝑋) ↔ ((𝑋𝐴𝑌 ∈ {𝑌}) ∧ 𝑋 = 𝑋)))
1512, 14bitrid 283 . . . 4 ((𝑋𝐴𝑌𝑉) → ((⟨𝑋, 𝑌⟩ ∈ (𝐴 × {𝑌}) ∧ ⟨𝑋, 𝑌⟩1st 𝑋) ↔ ((𝑋𝐴𝑌 ∈ {𝑌}) ∧ 𝑋 = 𝑋)))
1610, 15bitrd 279 . . 3 ((𝑋𝐴𝑌𝑉) → (𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩ ↔ ((𝑋𝐴𝑌 ∈ {𝑌}) ∧ 𝑋 = 𝑋)))
174, 16mpbird 257 . 2 ((𝑋𝐴𝑌𝑉) → 𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩)
18 1stconst 8107 . . . 4 (𝑌𝑉 → (1st ↾ (𝐴 × {𝑌})):(𝐴 × {𝑌})–1-1-onto𝐴)
19 f1ocnv 6840 . . . 4 ((1st ↾ (𝐴 × {𝑌})):(𝐴 × {𝑌})–1-1-onto𝐴(1st ↾ (𝐴 × {𝑌})):𝐴1-1-onto→(𝐴 × {𝑌}))
20 f1ofn 6829 . . . 4 ((1st ↾ (𝐴 × {𝑌})):𝐴1-1-onto→(𝐴 × {𝑌}) → (1st ↾ (𝐴 × {𝑌})) Fn 𝐴)
2118, 19, 203syl 18 . . 3 (𝑌𝑉(1st ↾ (𝐴 × {𝑌})) Fn 𝐴)
22 simpl 482 . . 3 ((𝑋𝐴𝑌𝑉) → 𝑋𝐴)
23 fnbrfvb 6939 . . 3 (((1st ↾ (𝐴 × {𝑌})) Fn 𝐴𝑋𝐴) → (((1st ↾ (𝐴 × {𝑌}))‘𝑋) = ⟨𝑋, 𝑌⟩ ↔ 𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩))
2421, 22, 23syl2an2 686 . 2 ((𝑋𝐴𝑌𝑉) → (((1st ↾ (𝐴 × {𝑌}))‘𝑋) = ⟨𝑋, 𝑌⟩ ↔ 𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩))
2517, 24mpbird 257 1 ((𝑋𝐴𝑌𝑉) → ((1st ↾ (𝐴 × {𝑌}))‘𝑋) = ⟨𝑋, 𝑌⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  {csn 4606  cop 4612   class class class wbr 5123   × cxp 5663  ccnv 5664  cres 5667   Fn wfn 6536  1-1-ontowf1o 6540  cfv 6541  1st c1st 7994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-1st 7996  df-2nd 7997
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator