Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fv1stcnv Structured version   Visualization version   GIF version

Theorem fv1stcnv 35740
Description: The value of the converse of 1st restricted to a singleton. (Contributed by Scott Fenton, 2-Jul-2020.)
Assertion
Ref Expression
fv1stcnv ((𝑋𝐴𝑌𝑉) → ((1st ↾ (𝐴 × {𝑌}))‘𝑋) = ⟨𝑋, 𝑌⟩)

Proof of Theorem fv1stcnv
StepHypRef Expression
1 snidg 4682 . . . . 5 (𝑌𝑉𝑌 ∈ {𝑌})
21anim2i 616 . . . 4 ((𝑋𝐴𝑌𝑉) → (𝑋𝐴𝑌 ∈ {𝑌}))
3 eqid 2740 . . . 4 𝑋 = 𝑋
42, 3jctir 520 . . 3 ((𝑋𝐴𝑌𝑉) → ((𝑋𝐴𝑌 ∈ {𝑌}) ∧ 𝑋 = 𝑋))
5 opex 5484 . . . . . . 7 𝑋, 𝑌⟩ ∈ V
6 brcnvg 5904 . . . . . . 7 ((𝑋𝐴 ∧ ⟨𝑋, 𝑌⟩ ∈ V) → (𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩ ↔ ⟨𝑋, 𝑌⟩(1st ↾ (𝐴 × {𝑌}))𝑋))
75, 6mpan2 690 . . . . . 6 (𝑋𝐴 → (𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩ ↔ ⟨𝑋, 𝑌⟩(1st ↾ (𝐴 × {𝑌}))𝑋))
8 brres 6016 . . . . . 6 (𝑋𝐴 → (⟨𝑋, 𝑌⟩(1st ↾ (𝐴 × {𝑌}))𝑋 ↔ (⟨𝑋, 𝑌⟩ ∈ (𝐴 × {𝑌}) ∧ ⟨𝑋, 𝑌⟩1st 𝑋)))
97, 8bitrd 279 . . . . 5 (𝑋𝐴 → (𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩ ↔ (⟨𝑋, 𝑌⟩ ∈ (𝐴 × {𝑌}) ∧ ⟨𝑋, 𝑌⟩1st 𝑋)))
109adantr 480 . . . 4 ((𝑋𝐴𝑌𝑉) → (𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩ ↔ (⟨𝑋, 𝑌⟩ ∈ (𝐴 × {𝑌}) ∧ ⟨𝑋, 𝑌⟩1st 𝑋)))
11 opelxp 5736 . . . . . 6 (⟨𝑋, 𝑌⟩ ∈ (𝐴 × {𝑌}) ↔ (𝑋𝐴𝑌 ∈ {𝑌}))
1211anbi1i 623 . . . . 5 ((⟨𝑋, 𝑌⟩ ∈ (𝐴 × {𝑌}) ∧ ⟨𝑋, 𝑌⟩1st 𝑋) ↔ ((𝑋𝐴𝑌 ∈ {𝑌}) ∧ ⟨𝑋, 𝑌⟩1st 𝑋))
13 br1steqg 8052 . . . . . 6 ((𝑋𝐴𝑌𝑉) → (⟨𝑋, 𝑌⟩1st 𝑋𝑋 = 𝑋))
1413anbi2d 629 . . . . 5 ((𝑋𝐴𝑌𝑉) → (((𝑋𝐴𝑌 ∈ {𝑌}) ∧ ⟨𝑋, 𝑌⟩1st 𝑋) ↔ ((𝑋𝐴𝑌 ∈ {𝑌}) ∧ 𝑋 = 𝑋)))
1512, 14bitrid 283 . . . 4 ((𝑋𝐴𝑌𝑉) → ((⟨𝑋, 𝑌⟩ ∈ (𝐴 × {𝑌}) ∧ ⟨𝑋, 𝑌⟩1st 𝑋) ↔ ((𝑋𝐴𝑌 ∈ {𝑌}) ∧ 𝑋 = 𝑋)))
1610, 15bitrd 279 . . 3 ((𝑋𝐴𝑌𝑉) → (𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩ ↔ ((𝑋𝐴𝑌 ∈ {𝑌}) ∧ 𝑋 = 𝑋)))
174, 16mpbird 257 . 2 ((𝑋𝐴𝑌𝑉) → 𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩)
18 1stconst 8141 . . . 4 (𝑌𝑉 → (1st ↾ (𝐴 × {𝑌})):(𝐴 × {𝑌})–1-1-onto𝐴)
19 f1ocnv 6874 . . . 4 ((1st ↾ (𝐴 × {𝑌})):(𝐴 × {𝑌})–1-1-onto𝐴(1st ↾ (𝐴 × {𝑌})):𝐴1-1-onto→(𝐴 × {𝑌}))
20 f1ofn 6863 . . . 4 ((1st ↾ (𝐴 × {𝑌})):𝐴1-1-onto→(𝐴 × {𝑌}) → (1st ↾ (𝐴 × {𝑌})) Fn 𝐴)
2118, 19, 203syl 18 . . 3 (𝑌𝑉(1st ↾ (𝐴 × {𝑌})) Fn 𝐴)
22 simpl 482 . . 3 ((𝑋𝐴𝑌𝑉) → 𝑋𝐴)
23 fnbrfvb 6973 . . 3 (((1st ↾ (𝐴 × {𝑌})) Fn 𝐴𝑋𝐴) → (((1st ↾ (𝐴 × {𝑌}))‘𝑋) = ⟨𝑋, 𝑌⟩ ↔ 𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩))
2421, 22, 23syl2an2 685 . 2 ((𝑋𝐴𝑌𝑉) → (((1st ↾ (𝐴 × {𝑌}))‘𝑋) = ⟨𝑋, 𝑌⟩ ↔ 𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩))
2517, 24mpbird 257 1 ((𝑋𝐴𝑌𝑉) → ((1st ↾ (𝐴 × {𝑌}))‘𝑋) = ⟨𝑋, 𝑌⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648  cop 4654   class class class wbr 5166   × cxp 5698  ccnv 5699  cres 5702   Fn wfn 6568  1-1-ontowf1o 6572  cfv 6573  1st c1st 8028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-1st 8030  df-2nd 8031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator