Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fv1stcnv Structured version   Visualization version   GIF version

Theorem fv1stcnv 35770
Description: The value of the converse of 1st restricted to a singleton. (Contributed by Scott Fenton, 2-Jul-2020.)
Assertion
Ref Expression
fv1stcnv ((𝑋𝐴𝑌𝑉) → ((1st ↾ (𝐴 × {𝑌}))‘𝑋) = ⟨𝑋, 𝑌⟩)

Proof of Theorem fv1stcnv
StepHypRef Expression
1 snidg 4612 . . . . 5 (𝑌𝑉𝑌 ∈ {𝑌})
21anim2i 617 . . . 4 ((𝑋𝐴𝑌𝑉) → (𝑋𝐴𝑌 ∈ {𝑌}))
3 eqid 2729 . . . 4 𝑋 = 𝑋
42, 3jctir 520 . . 3 ((𝑋𝐴𝑌𝑉) → ((𝑋𝐴𝑌 ∈ {𝑌}) ∧ 𝑋 = 𝑋))
5 opex 5407 . . . . . . 7 𝑋, 𝑌⟩ ∈ V
6 brcnvg 5822 . . . . . . 7 ((𝑋𝐴 ∧ ⟨𝑋, 𝑌⟩ ∈ V) → (𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩ ↔ ⟨𝑋, 𝑌⟩(1st ↾ (𝐴 × {𝑌}))𝑋))
75, 6mpan2 691 . . . . . 6 (𝑋𝐴 → (𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩ ↔ ⟨𝑋, 𝑌⟩(1st ↾ (𝐴 × {𝑌}))𝑋))
8 brres 5937 . . . . . 6 (𝑋𝐴 → (⟨𝑋, 𝑌⟩(1st ↾ (𝐴 × {𝑌}))𝑋 ↔ (⟨𝑋, 𝑌⟩ ∈ (𝐴 × {𝑌}) ∧ ⟨𝑋, 𝑌⟩1st 𝑋)))
97, 8bitrd 279 . . . . 5 (𝑋𝐴 → (𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩ ↔ (⟨𝑋, 𝑌⟩ ∈ (𝐴 × {𝑌}) ∧ ⟨𝑋, 𝑌⟩1st 𝑋)))
109adantr 480 . . . 4 ((𝑋𝐴𝑌𝑉) → (𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩ ↔ (⟨𝑋, 𝑌⟩ ∈ (𝐴 × {𝑌}) ∧ ⟨𝑋, 𝑌⟩1st 𝑋)))
11 opelxp 5655 . . . . . 6 (⟨𝑋, 𝑌⟩ ∈ (𝐴 × {𝑌}) ↔ (𝑋𝐴𝑌 ∈ {𝑌}))
1211anbi1i 624 . . . . 5 ((⟨𝑋, 𝑌⟩ ∈ (𝐴 × {𝑌}) ∧ ⟨𝑋, 𝑌⟩1st 𝑋) ↔ ((𝑋𝐴𝑌 ∈ {𝑌}) ∧ ⟨𝑋, 𝑌⟩1st 𝑋))
13 br1steqg 7946 . . . . . 6 ((𝑋𝐴𝑌𝑉) → (⟨𝑋, 𝑌⟩1st 𝑋𝑋 = 𝑋))
1413anbi2d 630 . . . . 5 ((𝑋𝐴𝑌𝑉) → (((𝑋𝐴𝑌 ∈ {𝑌}) ∧ ⟨𝑋, 𝑌⟩1st 𝑋) ↔ ((𝑋𝐴𝑌 ∈ {𝑌}) ∧ 𝑋 = 𝑋)))
1512, 14bitrid 283 . . . 4 ((𝑋𝐴𝑌𝑉) → ((⟨𝑋, 𝑌⟩ ∈ (𝐴 × {𝑌}) ∧ ⟨𝑋, 𝑌⟩1st 𝑋) ↔ ((𝑋𝐴𝑌 ∈ {𝑌}) ∧ 𝑋 = 𝑋)))
1610, 15bitrd 279 . . 3 ((𝑋𝐴𝑌𝑉) → (𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩ ↔ ((𝑋𝐴𝑌 ∈ {𝑌}) ∧ 𝑋 = 𝑋)))
174, 16mpbird 257 . 2 ((𝑋𝐴𝑌𝑉) → 𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩)
18 1stconst 8033 . . . 4 (𝑌𝑉 → (1st ↾ (𝐴 × {𝑌})):(𝐴 × {𝑌})–1-1-onto𝐴)
19 f1ocnv 6776 . . . 4 ((1st ↾ (𝐴 × {𝑌})):(𝐴 × {𝑌})–1-1-onto𝐴(1st ↾ (𝐴 × {𝑌})):𝐴1-1-onto→(𝐴 × {𝑌}))
20 f1ofn 6765 . . . 4 ((1st ↾ (𝐴 × {𝑌})):𝐴1-1-onto→(𝐴 × {𝑌}) → (1st ↾ (𝐴 × {𝑌})) Fn 𝐴)
2118, 19, 203syl 18 . . 3 (𝑌𝑉(1st ↾ (𝐴 × {𝑌})) Fn 𝐴)
22 simpl 482 . . 3 ((𝑋𝐴𝑌𝑉) → 𝑋𝐴)
23 fnbrfvb 6873 . . 3 (((1st ↾ (𝐴 × {𝑌})) Fn 𝐴𝑋𝐴) → (((1st ↾ (𝐴 × {𝑌}))‘𝑋) = ⟨𝑋, 𝑌⟩ ↔ 𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩))
2421, 22, 23syl2an2 686 . 2 ((𝑋𝐴𝑌𝑉) → (((1st ↾ (𝐴 × {𝑌}))‘𝑋) = ⟨𝑋, 𝑌⟩ ↔ 𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩))
2517, 24mpbird 257 1 ((𝑋𝐴𝑌𝑉) → ((1st ↾ (𝐴 × {𝑌}))‘𝑋) = ⟨𝑋, 𝑌⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  {csn 4577  cop 4583   class class class wbr 5092   × cxp 5617  ccnv 5618  cres 5621   Fn wfn 6477  1-1-ontowf1o 6481  cfv 6482  1st c1st 7922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-1st 7924  df-2nd 7925
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator