MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elbl4 Structured version   Visualization version   GIF version

Theorem elbl4 23148
Description: Membership in a ball, alternative definition. (Contributed by Thierry Arnoux, 26-Jan-2018.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
elbl4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵 ∈ (𝐴(ball‘𝐷)𝑅) ↔ 𝐵(𝐷 “ (0[,)𝑅))𝐴))

Proof of Theorem elbl4
StepHypRef Expression
1 rpxr 12376 . . 3 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
2 blcomps 22978 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵 ∈ (𝐴(ball‘𝐷)𝑅) ↔ 𝐴 ∈ (𝐵(ball‘𝐷)𝑅)))
31, 2sylanl2 680 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵 ∈ (𝐴(ball‘𝐷)𝑅) ↔ 𝐴 ∈ (𝐵(ball‘𝐷)𝑅)))
4 simpll 766 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴𝑋𝐵𝑋)) → 𝐷 ∈ (PsMet‘𝑋))
5 simprr 772 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
6 simplr 768 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴𝑋𝐵𝑋)) → 𝑅 ∈ ℝ+)
7 blval2 23147 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵𝑋𝑅 ∈ ℝ+) → (𝐵(ball‘𝐷)𝑅) = ((𝐷 “ (0[,)𝑅)) “ {𝐵}))
87eleq2d 2897 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵𝑋𝑅 ∈ ℝ+) → (𝐴 ∈ (𝐵(ball‘𝐷)𝑅) ↔ 𝐴 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝐵})))
94, 5, 6, 8syl3anc 1368 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴 ∈ (𝐵(ball‘𝐷)𝑅) ↔ 𝐴 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝐵})))
10 elimasng 5928 . . . . 5 ((𝐵𝑋𝐴𝑋) → (𝐴 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝐵}) ↔ ⟨𝐵, 𝐴⟩ ∈ (𝐷 “ (0[,)𝑅))))
11 df-br 5040 . . . . 5 (𝐵(𝐷 “ (0[,)𝑅))𝐴 ↔ ⟨𝐵, 𝐴⟩ ∈ (𝐷 “ (0[,)𝑅)))
1210, 11syl6bbr 292 . . . 4 ((𝐵𝑋𝐴𝑋) → (𝐴 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝐵}) ↔ 𝐵(𝐷 “ (0[,)𝑅))𝐴))
1312ancoms 462 . . 3 ((𝐴𝑋𝐵𝑋) → (𝐴 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝐵}) ↔ 𝐵(𝐷 “ (0[,)𝑅))𝐴))
1413adantl 485 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝐵}) ↔ 𝐵(𝐷 “ (0[,)𝑅))𝐴))
153, 9, 143bitrd 308 1 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵 ∈ (𝐴(ball‘𝐷)𝑅) ↔ 𝐵(𝐷 “ (0[,)𝑅))𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084  wcel 2115  {csn 4540  cop 4546   class class class wbr 5039  ccnv 5527  cima 5531  cfv 6328  (class class class)co 7130  0cc0 10514  *cxr 10651  +crp 12367  [,)cico 12718  PsMetcpsmet 20504  ballcbl 20507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-1st 7664  df-2nd 7665  df-er 8264  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-2 11678  df-rp 12368  df-xneg 12485  df-xadd 12486  df-xmul 12487  df-ico 12722  df-psmet 20512  df-bl 20515
This theorem is referenced by:  metucn  23156
  Copyright terms: Public domain W3C validator