MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elbl4 Structured version   Visualization version   GIF version

Theorem elbl4 23700
Description: Membership in a ball, alternative definition. (Contributed by Thierry Arnoux, 26-Jan-2018.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
elbl4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵 ∈ (𝐴(ball‘𝐷)𝑅) ↔ 𝐵(𝐷 “ (0[,)𝑅))𝐴))

Proof of Theorem elbl4
StepHypRef Expression
1 rpxr 12721 . . 3 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
2 blcomps 23527 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵 ∈ (𝐴(ball‘𝐷)𝑅) ↔ 𝐴 ∈ (𝐵(ball‘𝐷)𝑅)))
31, 2sylanl2 677 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵 ∈ (𝐴(ball‘𝐷)𝑅) ↔ 𝐴 ∈ (𝐵(ball‘𝐷)𝑅)))
4 simpll 763 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴𝑋𝐵𝑋)) → 𝐷 ∈ (PsMet‘𝑋))
5 simprr 769 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
6 simplr 765 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴𝑋𝐵𝑋)) → 𝑅 ∈ ℝ+)
7 blval2 23699 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵𝑋𝑅 ∈ ℝ+) → (𝐵(ball‘𝐷)𝑅) = ((𝐷 “ (0[,)𝑅)) “ {𝐵}))
87eleq2d 2825 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵𝑋𝑅 ∈ ℝ+) → (𝐴 ∈ (𝐵(ball‘𝐷)𝑅) ↔ 𝐴 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝐵})))
94, 5, 6, 8syl3anc 1369 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴 ∈ (𝐵(ball‘𝐷)𝑅) ↔ 𝐴 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝐵})))
10 elimasng 5993 . . . . 5 ((𝐵𝑋𝐴𝑋) → (𝐴 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝐵}) ↔ ⟨𝐵, 𝐴⟩ ∈ (𝐷 “ (0[,)𝑅))))
11 df-br 5079 . . . . 5 (𝐵(𝐷 “ (0[,)𝑅))𝐴 ↔ ⟨𝐵, 𝐴⟩ ∈ (𝐷 “ (0[,)𝑅)))
1210, 11bitr4di 288 . . . 4 ((𝐵𝑋𝐴𝑋) → (𝐴 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝐵}) ↔ 𝐵(𝐷 “ (0[,)𝑅))𝐴))
1312ancoms 458 . . 3 ((𝐴𝑋𝐵𝑋) → (𝐴 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝐵}) ↔ 𝐵(𝐷 “ (0[,)𝑅))𝐴))
1413adantl 481 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝐵}) ↔ 𝐵(𝐷 “ (0[,)𝑅))𝐴))
153, 9, 143bitrd 304 1 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵 ∈ (𝐴(ball‘𝐷)𝑅) ↔ 𝐵(𝐷 “ (0[,)𝑅))𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wcel 2109  {csn 4566  cop 4572   class class class wbr 5078  ccnv 5587  cima 5591  cfv 6430  (class class class)co 7268  0cc0 10855  *cxr 10992  +crp 12712  [,)cico 13063  PsMetcpsmet 20562  ballcbl 20565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-2 12019  df-rp 12713  df-xneg 12830  df-xadd 12831  df-xmul 12832  df-ico 13067  df-psmet 20570  df-bl 20573
This theorem is referenced by:  metucn  23708
  Copyright terms: Public domain W3C validator