MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elbl4 Structured version   Visualization version   GIF version

Theorem elbl4 24451
Description: Membership in a ball, alternative definition. (Contributed by Thierry Arnoux, 26-Jan-2018.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
elbl4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵 ∈ (𝐴(ball‘𝐷)𝑅) ↔ 𝐵(𝐷 “ (0[,)𝑅))𝐴))

Proof of Theorem elbl4
StepHypRef Expression
1 rpxr 12961 . . 3 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
2 blcomps 24281 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵 ∈ (𝐴(ball‘𝐷)𝑅) ↔ 𝐴 ∈ (𝐵(ball‘𝐷)𝑅)))
31, 2sylanl2 681 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵 ∈ (𝐴(ball‘𝐷)𝑅) ↔ 𝐴 ∈ (𝐵(ball‘𝐷)𝑅)))
4 simpll 766 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴𝑋𝐵𝑋)) → 𝐷 ∈ (PsMet‘𝑋))
5 simprr 772 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
6 simplr 768 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴𝑋𝐵𝑋)) → 𝑅 ∈ ℝ+)
7 blval2 24450 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵𝑋𝑅 ∈ ℝ+) → (𝐵(ball‘𝐷)𝑅) = ((𝐷 “ (0[,)𝑅)) “ {𝐵}))
87eleq2d 2814 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵𝑋𝑅 ∈ ℝ+) → (𝐴 ∈ (𝐵(ball‘𝐷)𝑅) ↔ 𝐴 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝐵})))
94, 5, 6, 8syl3anc 1373 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴 ∈ (𝐵(ball‘𝐷)𝑅) ↔ 𝐴 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝐵})))
10 elimasng 6060 . . . . 5 ((𝐵𝑋𝐴𝑋) → (𝐴 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝐵}) ↔ ⟨𝐵, 𝐴⟩ ∈ (𝐷 “ (0[,)𝑅))))
11 df-br 5108 . . . . 5 (𝐵(𝐷 “ (0[,)𝑅))𝐴 ↔ ⟨𝐵, 𝐴⟩ ∈ (𝐷 “ (0[,)𝑅)))
1210, 11bitr4di 289 . . . 4 ((𝐵𝑋𝐴𝑋) → (𝐴 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝐵}) ↔ 𝐵(𝐷 “ (0[,)𝑅))𝐴))
1312ancoms 458 . . 3 ((𝐴𝑋𝐵𝑋) → (𝐴 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝐵}) ↔ 𝐵(𝐷 “ (0[,)𝑅))𝐴))
1413adantl 481 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝐵}) ↔ 𝐵(𝐷 “ (0[,)𝑅))𝐴))
153, 9, 143bitrd 305 1 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵 ∈ (𝐴(ball‘𝐷)𝑅) ↔ 𝐵(𝐷 “ (0[,)𝑅))𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  {csn 4589  cop 4595   class class class wbr 5107  ccnv 5637  cima 5641  cfv 6511  (class class class)co 7387  0cc0 11068  *cxr 11207  +crp 12951  [,)cico 13308  PsMetcpsmet 21248  ballcbl 21251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-2 12249  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ico 13312  df-psmet 21256  df-bl 21259
This theorem is referenced by:  metucn  24459
  Copyright terms: Public domain W3C validator