Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elbl4 | Structured version Visualization version GIF version |
Description: Membership in a ball, alternative definition. (Contributed by Thierry Arnoux, 26-Jan-2018.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
Ref | Expression |
---|---|
elbl4 | ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐵 ∈ (𝐴(ball‘𝐷)𝑅) ↔ 𝐵(◡𝐷 “ (0[,)𝑅))𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpxr 12721 | . . 3 ⊢ (𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ*) | |
2 | blcomps 23527 | . . 3 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐵 ∈ (𝐴(ball‘𝐷)𝑅) ↔ 𝐴 ∈ (𝐵(ball‘𝐷)𝑅))) | |
3 | 1, 2 | sylanl2 677 | . 2 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐵 ∈ (𝐴(ball‘𝐷)𝑅) ↔ 𝐴 ∈ (𝐵(ball‘𝐷)𝑅))) |
4 | simpll 763 | . . 3 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐷 ∈ (PsMet‘𝑋)) | |
5 | simprr 769 | . . 3 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐵 ∈ 𝑋) | |
6 | simplr 765 | . . 3 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝑅 ∈ ℝ+) | |
7 | blval2 23699 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → (𝐵(ball‘𝐷)𝑅) = ((◡𝐷 “ (0[,)𝑅)) “ {𝐵})) | |
8 | 7 | eleq2d 2825 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → (𝐴 ∈ (𝐵(ball‘𝐷)𝑅) ↔ 𝐴 ∈ ((◡𝐷 “ (0[,)𝑅)) “ {𝐵}))) |
9 | 4, 5, 6, 8 | syl3anc 1369 | . 2 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴 ∈ (𝐵(ball‘𝐷)𝑅) ↔ 𝐴 ∈ ((◡𝐷 “ (0[,)𝑅)) “ {𝐵}))) |
10 | elimasng 5993 | . . . . 5 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ ((◡𝐷 “ (0[,)𝑅)) “ {𝐵}) ↔ 〈𝐵, 𝐴〉 ∈ (◡𝐷 “ (0[,)𝑅)))) | |
11 | df-br 5079 | . . . . 5 ⊢ (𝐵(◡𝐷 “ (0[,)𝑅))𝐴 ↔ 〈𝐵, 𝐴〉 ∈ (◡𝐷 “ (0[,)𝑅))) | |
12 | 10, 11 | bitr4di 288 | . . . 4 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ ((◡𝐷 “ (0[,)𝑅)) “ {𝐵}) ↔ 𝐵(◡𝐷 “ (0[,)𝑅))𝐴)) |
13 | 12 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∈ ((◡𝐷 “ (0[,)𝑅)) “ {𝐵}) ↔ 𝐵(◡𝐷 “ (0[,)𝑅))𝐴)) |
14 | 13 | adantl 481 | . 2 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴 ∈ ((◡𝐷 “ (0[,)𝑅)) “ {𝐵}) ↔ 𝐵(◡𝐷 “ (0[,)𝑅))𝐴)) |
15 | 3, 9, 14 | 3bitrd 304 | 1 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐵 ∈ (𝐴(ball‘𝐷)𝑅) ↔ 𝐵(◡𝐷 “ (0[,)𝑅))𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2109 {csn 4566 〈cop 4572 class class class wbr 5078 ◡ccnv 5587 “ cima 5591 ‘cfv 6430 (class class class)co 7268 0cc0 10855 ℝ*cxr 10992 ℝ+crp 12712 [,)cico 13063 PsMetcpsmet 20562 ballcbl 20565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-2 12019 df-rp 12713 df-xneg 12830 df-xadd 12831 df-xmul 12832 df-ico 13067 df-psmet 20570 df-bl 20573 |
This theorem is referenced by: metucn 23708 |
Copyright terms: Public domain | W3C validator |