![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elbl4 | Structured version Visualization version GIF version |
Description: Membership in a ball, alternative definition. (Contributed by Thierry Arnoux, 26-Jan-2018.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
Ref | Expression |
---|---|
elbl4 | ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐵 ∈ (𝐴(ball‘𝐷)𝑅) ↔ 𝐵(◡𝐷 “ (0[,)𝑅))𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpxr 12965 | . . 3 ⊢ (𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ*) | |
2 | blcomps 23828 | . . 3 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐵 ∈ (𝐴(ball‘𝐷)𝑅) ↔ 𝐴 ∈ (𝐵(ball‘𝐷)𝑅))) | |
3 | 1, 2 | sylanl2 679 | . 2 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐵 ∈ (𝐴(ball‘𝐷)𝑅) ↔ 𝐴 ∈ (𝐵(ball‘𝐷)𝑅))) |
4 | simpll 765 | . . 3 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐷 ∈ (PsMet‘𝑋)) | |
5 | simprr 771 | . . 3 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐵 ∈ 𝑋) | |
6 | simplr 767 | . . 3 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝑅 ∈ ℝ+) | |
7 | blval2 24000 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → (𝐵(ball‘𝐷)𝑅) = ((◡𝐷 “ (0[,)𝑅)) “ {𝐵})) | |
8 | 7 | eleq2d 2818 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → (𝐴 ∈ (𝐵(ball‘𝐷)𝑅) ↔ 𝐴 ∈ ((◡𝐷 “ (0[,)𝑅)) “ {𝐵}))) |
9 | 4, 5, 6, 8 | syl3anc 1371 | . 2 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴 ∈ (𝐵(ball‘𝐷)𝑅) ↔ 𝐴 ∈ ((◡𝐷 “ (0[,)𝑅)) “ {𝐵}))) |
10 | elimasng 6076 | . . . . 5 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ ((◡𝐷 “ (0[,)𝑅)) “ {𝐵}) ↔ 〈𝐵, 𝐴〉 ∈ (◡𝐷 “ (0[,)𝑅)))) | |
11 | df-br 5142 | . . . . 5 ⊢ (𝐵(◡𝐷 “ (0[,)𝑅))𝐴 ↔ 〈𝐵, 𝐴〉 ∈ (◡𝐷 “ (0[,)𝑅))) | |
12 | 10, 11 | bitr4di 288 | . . . 4 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ ((◡𝐷 “ (0[,)𝑅)) “ {𝐵}) ↔ 𝐵(◡𝐷 “ (0[,)𝑅))𝐴)) |
13 | 12 | ancoms 459 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∈ ((◡𝐷 “ (0[,)𝑅)) “ {𝐵}) ↔ 𝐵(◡𝐷 “ (0[,)𝑅))𝐴)) |
14 | 13 | adantl 482 | . 2 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴 ∈ ((◡𝐷 “ (0[,)𝑅)) “ {𝐵}) ↔ 𝐵(◡𝐷 “ (0[,)𝑅))𝐴)) |
15 | 3, 9, 14 | 3bitrd 304 | 1 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐵 ∈ (𝐴(ball‘𝐷)𝑅) ↔ 𝐵(◡𝐷 “ (0[,)𝑅))𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 {csn 4622 〈cop 4628 class class class wbr 5141 ◡ccnv 5668 “ cima 5672 ‘cfv 6532 (class class class)co 7393 0cc0 11092 ℝ*cxr 11229 ℝ+crp 12956 [,)cico 13308 PsMetcpsmet 20862 ballcbl 20865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-1st 7957 df-2nd 7958 df-er 8686 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-div 11854 df-2 12257 df-rp 12957 df-xneg 13074 df-xadd 13075 df-xmul 13076 df-ico 13312 df-psmet 20870 df-bl 20873 |
This theorem is referenced by: metucn 24009 |
Copyright terms: Public domain | W3C validator |