Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elbl4 | Structured version Visualization version GIF version |
Description: Membership in a ball, alternative definition. (Contributed by Thierry Arnoux, 26-Jan-2018.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
Ref | Expression |
---|---|
elbl4 | ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐵 ∈ (𝐴(ball‘𝐷)𝑅) ↔ 𝐵(◡𝐷 “ (0[,)𝑅))𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpxr 12785 | . . 3 ⊢ (𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ*) | |
2 | blcomps 23591 | . . 3 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐵 ∈ (𝐴(ball‘𝐷)𝑅) ↔ 𝐴 ∈ (𝐵(ball‘𝐷)𝑅))) | |
3 | 1, 2 | sylanl2 679 | . 2 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐵 ∈ (𝐴(ball‘𝐷)𝑅) ↔ 𝐴 ∈ (𝐵(ball‘𝐷)𝑅))) |
4 | simpll 765 | . . 3 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐷 ∈ (PsMet‘𝑋)) | |
5 | simprr 771 | . . 3 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐵 ∈ 𝑋) | |
6 | simplr 767 | . . 3 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝑅 ∈ ℝ+) | |
7 | blval2 23763 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → (𝐵(ball‘𝐷)𝑅) = ((◡𝐷 “ (0[,)𝑅)) “ {𝐵})) | |
8 | 7 | eleq2d 2822 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → (𝐴 ∈ (𝐵(ball‘𝐷)𝑅) ↔ 𝐴 ∈ ((◡𝐷 “ (0[,)𝑅)) “ {𝐵}))) |
9 | 4, 5, 6, 8 | syl3anc 1371 | . 2 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴 ∈ (𝐵(ball‘𝐷)𝑅) ↔ 𝐴 ∈ ((◡𝐷 “ (0[,)𝑅)) “ {𝐵}))) |
10 | elimasng 6006 | . . . . 5 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ ((◡𝐷 “ (0[,)𝑅)) “ {𝐵}) ↔ 〈𝐵, 𝐴〉 ∈ (◡𝐷 “ (0[,)𝑅)))) | |
11 | df-br 5082 | . . . . 5 ⊢ (𝐵(◡𝐷 “ (0[,)𝑅))𝐴 ↔ 〈𝐵, 𝐴〉 ∈ (◡𝐷 “ (0[,)𝑅))) | |
12 | 10, 11 | bitr4di 289 | . . . 4 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ ((◡𝐷 “ (0[,)𝑅)) “ {𝐵}) ↔ 𝐵(◡𝐷 “ (0[,)𝑅))𝐴)) |
13 | 12 | ancoms 460 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∈ ((◡𝐷 “ (0[,)𝑅)) “ {𝐵}) ↔ 𝐵(◡𝐷 “ (0[,)𝑅))𝐴)) |
14 | 13 | adantl 483 | . 2 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴 ∈ ((◡𝐷 “ (0[,)𝑅)) “ {𝐵}) ↔ 𝐵(◡𝐷 “ (0[,)𝑅))𝐴)) |
15 | 3, 9, 14 | 3bitrd 305 | 1 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐵 ∈ (𝐴(ball‘𝐷)𝑅) ↔ 𝐵(◡𝐷 “ (0[,)𝑅))𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 ∈ wcel 2104 {csn 4565 〈cop 4571 class class class wbr 5081 ◡ccnv 5599 “ cima 5603 ‘cfv 6458 (class class class)co 7307 0cc0 10917 ℝ*cxr 11054 ℝ+crp 12776 [,)cico 13127 PsMetcpsmet 20626 ballcbl 20629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 df-er 8529 df-map 8648 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-2 12082 df-rp 12777 df-xneg 12894 df-xadd 12895 df-xmul 12896 df-ico 13131 df-psmet 20634 df-bl 20637 |
This theorem is referenced by: metucn 23772 |
Copyright terms: Public domain | W3C validator |