| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eltail | Structured version Visualization version GIF version | ||
| Description: An element of a tail. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| Ref | Expression |
|---|---|
| tailfval.1 | ⊢ 𝑋 = dom 𝐷 |
| Ref | Expression |
|---|---|
| eltail | ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝐶) → (𝐵 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐴𝐷𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tailfval.1 | . . . . 5 ⊢ 𝑋 = dom 𝐷 | |
| 2 | 1 | tailval 36368 | . . . 4 ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → ((tail‘𝐷)‘𝐴) = (𝐷 “ {𝐴})) |
| 3 | 2 | eleq2d 2815 | . . 3 ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → (𝐵 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐵 ∈ (𝐷 “ {𝐴}))) |
| 4 | 3 | 3adant3 1132 | . 2 ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝐶) → (𝐵 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐵 ∈ (𝐷 “ {𝐴}))) |
| 5 | elimasng 6063 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝐶) → (𝐵 ∈ (𝐷 “ {𝐴}) ↔ 〈𝐴, 𝐵〉 ∈ 𝐷)) | |
| 6 | df-br 5111 | . . . 4 ⊢ (𝐴𝐷𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐷) | |
| 7 | 5, 6 | bitr4di 289 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝐶) → (𝐵 ∈ (𝐷 “ {𝐴}) ↔ 𝐴𝐷𝐵)) |
| 8 | 7 | 3adant1 1130 | . 2 ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝐶) → (𝐵 ∈ (𝐷 “ {𝐴}) ↔ 𝐴𝐷𝐵)) |
| 9 | 4, 8 | bitrd 279 | 1 ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝐶) → (𝐵 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐴𝐷𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {csn 4592 〈cop 4598 class class class wbr 5110 dom cdm 5641 “ cima 5644 ‘cfv 6514 DirRelcdir 18560 tailctail 18561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-dir 18562 df-tail 18563 |
| This theorem is referenced by: tailini 36371 tailfb 36372 filnetlem4 36376 |
| Copyright terms: Public domain | W3C validator |