Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eltail Structured version   Visualization version   GIF version

Theorem eltail 36369
Description: An element of a tail. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Hypothesis
Ref Expression
tailfval.1 𝑋 = dom 𝐷
Assertion
Ref Expression
eltail ((𝐷 ∈ DirRel ∧ 𝐴𝑋𝐵𝐶) → (𝐵 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐴𝐷𝐵))

Proof of Theorem eltail
StepHypRef Expression
1 tailfval.1 . . . . 5 𝑋 = dom 𝐷
21tailval 36368 . . . 4 ((𝐷 ∈ DirRel ∧ 𝐴𝑋) → ((tail‘𝐷)‘𝐴) = (𝐷 “ {𝐴}))
32eleq2d 2815 . . 3 ((𝐷 ∈ DirRel ∧ 𝐴𝑋) → (𝐵 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐵 ∈ (𝐷 “ {𝐴})))
433adant3 1132 . 2 ((𝐷 ∈ DirRel ∧ 𝐴𝑋𝐵𝐶) → (𝐵 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐵 ∈ (𝐷 “ {𝐴})))
5 elimasng 6063 . . . 4 ((𝐴𝑋𝐵𝐶) → (𝐵 ∈ (𝐷 “ {𝐴}) ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐷))
6 df-br 5111 . . . 4 (𝐴𝐷𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐷)
75, 6bitr4di 289 . . 3 ((𝐴𝑋𝐵𝐶) → (𝐵 ∈ (𝐷 “ {𝐴}) ↔ 𝐴𝐷𝐵))
873adant1 1130 . 2 ((𝐷 ∈ DirRel ∧ 𝐴𝑋𝐵𝐶) → (𝐵 ∈ (𝐷 “ {𝐴}) ↔ 𝐴𝐷𝐵))
94, 8bitrd 279 1 ((𝐷 ∈ DirRel ∧ 𝐴𝑋𝐵𝐶) → (𝐵 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {csn 4592  cop 4598   class class class wbr 5110  dom cdm 5641  cima 5644  cfv 6514  DirRelcdir 18560  tailctail 18561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-dir 18562  df-tail 18563
This theorem is referenced by:  tailini  36371  tailfb  36372  filnetlem4  36376
  Copyright terms: Public domain W3C validator