![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eltail | Structured version Visualization version GIF version |
Description: An element of a tail. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
tailfval.1 | ⊢ 𝑋 = dom 𝐷 |
Ref | Expression |
---|---|
eltail | ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝐶) → (𝐵 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐴𝐷𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tailfval.1 | . . . . 5 ⊢ 𝑋 = dom 𝐷 | |
2 | 1 | tailval 36341 | . . . 4 ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → ((tail‘𝐷)‘𝐴) = (𝐷 “ {𝐴})) |
3 | 2 | eleq2d 2830 | . . 3 ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → (𝐵 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐵 ∈ (𝐷 “ {𝐴}))) |
4 | 3 | 3adant3 1132 | . 2 ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝐶) → (𝐵 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐵 ∈ (𝐷 “ {𝐴}))) |
5 | elimasng 6120 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝐶) → (𝐵 ∈ (𝐷 “ {𝐴}) ↔ 〈𝐴, 𝐵〉 ∈ 𝐷)) | |
6 | df-br 5167 | . . . 4 ⊢ (𝐴𝐷𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐷) | |
7 | 5, 6 | bitr4di 289 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝐶) → (𝐵 ∈ (𝐷 “ {𝐴}) ↔ 𝐴𝐷𝐵)) |
8 | 7 | 3adant1 1130 | . 2 ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝐶) → (𝐵 ∈ (𝐷 “ {𝐴}) ↔ 𝐴𝐷𝐵)) |
9 | 4, 8 | bitrd 279 | 1 ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝐶) → (𝐵 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐴𝐷𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {csn 4648 〈cop 4654 class class class wbr 5166 dom cdm 5700 “ cima 5703 ‘cfv 6575 DirRelcdir 18666 tailctail 18667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-dir 18668 df-tail 18669 |
This theorem is referenced by: tailini 36344 tailfb 36345 filnetlem4 36349 |
Copyright terms: Public domain | W3C validator |