Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eltail Structured version   Visualization version   GIF version

Theorem eltail 36407
Description: An element of a tail. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Hypothesis
Ref Expression
tailfval.1 𝑋 = dom 𝐷
Assertion
Ref Expression
eltail ((𝐷 ∈ DirRel ∧ 𝐴𝑋𝐵𝐶) → (𝐵 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐴𝐷𝐵))

Proof of Theorem eltail
StepHypRef Expression
1 tailfval.1 . . . . 5 𝑋 = dom 𝐷
21tailval 36406 . . . 4 ((𝐷 ∈ DirRel ∧ 𝐴𝑋) → ((tail‘𝐷)‘𝐴) = (𝐷 “ {𝐴}))
32eleq2d 2817 . . 3 ((𝐷 ∈ DirRel ∧ 𝐴𝑋) → (𝐵 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐵 ∈ (𝐷 “ {𝐴})))
433adant3 1132 . 2 ((𝐷 ∈ DirRel ∧ 𝐴𝑋𝐵𝐶) → (𝐵 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐵 ∈ (𝐷 “ {𝐴})))
5 elimasng 6038 . . . 4 ((𝐴𝑋𝐵𝐶) → (𝐵 ∈ (𝐷 “ {𝐴}) ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐷))
6 df-br 5092 . . . 4 (𝐴𝐷𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐷)
75, 6bitr4di 289 . . 3 ((𝐴𝑋𝐵𝐶) → (𝐵 ∈ (𝐷 “ {𝐴}) ↔ 𝐴𝐷𝐵))
873adant1 1130 . 2 ((𝐷 ∈ DirRel ∧ 𝐴𝑋𝐵𝐶) → (𝐵 ∈ (𝐷 “ {𝐴}) ↔ 𝐴𝐷𝐵))
94, 8bitrd 279 1 ((𝐷 ∈ DirRel ∧ 𝐴𝑋𝐵𝐶) → (𝐵 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  {csn 4576  cop 4582   class class class wbr 5091  dom cdm 5616  cima 5619  cfv 6481  DirRelcdir 18497  tailctail 18498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-dir 18499  df-tail 18500
This theorem is referenced by:  tailini  36409  tailfb  36410  filnetlem4  36414
  Copyright terms: Public domain W3C validator