![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eltail | Structured version Visualization version GIF version |
Description: An element of a tail. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
tailfval.1 | ⊢ 𝑋 = dom 𝐷 |
Ref | Expression |
---|---|
eltail | ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝐶) → (𝐵 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐴𝐷𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tailfval.1 | . . . . 5 ⊢ 𝑋 = dom 𝐷 | |
2 | 1 | tailval 36368 | . . . 4 ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → ((tail‘𝐷)‘𝐴) = (𝐷 “ {𝐴})) |
3 | 2 | eleq2d 2827 | . . 3 ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → (𝐵 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐵 ∈ (𝐷 “ {𝐴}))) |
4 | 3 | 3adant3 1133 | . 2 ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝐶) → (𝐵 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐵 ∈ (𝐷 “ {𝐴}))) |
5 | elimasng 6114 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝐶) → (𝐵 ∈ (𝐷 “ {𝐴}) ↔ 〈𝐴, 𝐵〉 ∈ 𝐷)) | |
6 | df-br 5152 | . . . 4 ⊢ (𝐴𝐷𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐷) | |
7 | 5, 6 | bitr4di 289 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝐶) → (𝐵 ∈ (𝐷 “ {𝐴}) ↔ 𝐴𝐷𝐵)) |
8 | 7 | 3adant1 1131 | . 2 ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝐶) → (𝐵 ∈ (𝐷 “ {𝐴}) ↔ 𝐴𝐷𝐵)) |
9 | 4, 8 | bitrd 279 | 1 ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝐶) → (𝐵 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐴𝐷𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 {csn 4634 〈cop 4640 class class class wbr 5151 dom cdm 5693 “ cima 5696 ‘cfv 6569 DirRelcdir 18661 tailctail 18662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-dir 18663 df-tail 18664 |
This theorem is referenced by: tailini 36371 tailfb 36372 filnetlem4 36376 |
Copyright terms: Public domain | W3C validator |